Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1978 May;35(5):890–896. doi: 10.1128/aem.35.5.890-896.1978

Kinetics of biodegradation of p-nitrobenzoate and inhibition by benzoate in a pseudomonad.

H D Haller, R K Finn
PMCID: PMC242949  PMID: 655705

Abstract

The degradation of p-nitrobenzoate (p-NBA) by domestic sewage was inhibited by benzoate, and a model for this behavior was found in a soil isolate. The isolate, a pseudomonad, utilized p-NBA and benzoate by separate adaptive enzyme pathways. In oxygen uptake experiments, the degradation of p-NBA was competitively inhibited by benzoate, but the degradation of benzoate was not affected by the presence of p-NBA. 4-Nitrocatechol was not implicated in the inhibition. p-Hydroxybenzoate, which is the p-NBA degradation pathway, also had a decreased rate od degradation when benzoate was present. The growth rate of the isolate on the aromatic substrates and on glucose autoclaved in the medium was 0.3 h-1. When glucose was autoclaved separately, the growth rate was less, about 0.2 h-1. The apparent Km in oxygen uptake experiments was 25 micrometer for p-NBA and benzoate and 5 micrometer for p-hydroxybenzoate.

Full text

PDF
890

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard R. W., Palleroni N. J., Doudoroff M., Stanier R. Y., Mandel M. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J Gen Microbiol. 1970 Feb;60(2):199–214. doi: 10.1099/00221287-60-2-199. [DOI] [PubMed] [Google Scholar]
  2. CARTWRIGHT N. J., CAIN R. B. Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem J. 1959 Oct;73:305–314. doi: 10.1042/bj0730305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARTWRIGHT N. J., CAIN R. B. Bacterial degradation of the nitrobenzoic acids. Biochem J. 1959 Feb;71(2):248–261. doi: 10.1042/bj0710248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cain R. B. Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and a flavobacterium. J Gen Microbiol. 1966 Feb;42(2):219–235. doi: 10.1099/00221287-42-2-219. [DOI] [PubMed] [Google Scholar]
  5. Close J. A., Neilsen P. A. Resistance of a strain of Pseudomonas cepacia to esters of p-hydroxybenzoic acid. Appl Environ Microbiol. 1976 May;31(5):718–722. doi: 10.1128/aem.31.5.718-722.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DEIBEL R. H., EVANS J. B. Modified benzidine test for the detection of cytochrome-containing respiratory systems in microorganisms. J Bacteriol. 1960 Mar;79:356–360. doi: 10.1128/jb.79.3.356-360.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DURHAM N. N., McPHERSON D. L. Influence of extraneous carbon sources on biosynthesis de novo of bacterial enzymes. J Bacteriol. 1960 Jul;80:7–13. doi: 10.1128/jb.80.1.7-13.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DURHAM N. N. Studies on the metabolism of p-nitrobenzoic acid. Can J Microbiol. 1958 Apr;4(2):141–148. doi: 10.1139/m58-015. [DOI] [PubMed] [Google Scholar]
  9. GABY W. L., HADLEY C. Practical laboratory test for the identification of Pseudomonas aeruginosa. J Bacteriol. 1957 Sep;74(3):356–358. doi: 10.1128/jb.74.3.356-358.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GERMANIER R., WUHRMANN K. UBER DEN AEROBEN MIKROBIELLEN ABBAU AROMATISCHER NITROVERBINDUNGEN. Pathol Microbiol (Basel) 1963;26:569–578. [PubMed] [Google Scholar]
  11. Horvath R. S., Dotzlaf J. E., Kreger R. Co-metabolism of m-chlorobenzoate by natural microbial populations grown under co-substrate enrichment conditions. Bull Environ Contam Toxicol. 1975 Mar;13(3):357–361. doi: 10.1007/BF01685351. [DOI] [PubMed] [Google Scholar]
  12. Horvath R. S. Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique. Appl Microbiol. 1973 Jun;25(6):961–963. doi: 10.1128/am.25.6.961-963.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  15. Stanier R. Y. Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways. J Bacteriol. 1947 Sep;54(3):339–348. doi: 10.1128/jb.54.3.339-348.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stockdale H., Ribbons D. W., Dawes E. A. Occurrence of poly-beta-hydroxybutyrate in the Azotobacteriaceae. J Bacteriol. 1968 May;95(5):1798–1803. doi: 10.1128/jb.95.5.1798-1803.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tyson C. A. 4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases. J Biol Chem. 1975 Mar 10;250(5):1765–1770. [PubMed] [Google Scholar]
  18. Wheelis M. L., Palleroni N. J., Stanier R. Y. The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch Mikrobiol. 1967;59(1):302–314. doi: 10.1007/BF00406344. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES