Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1978 Nov;36(5):705–709. doi: 10.1128/aem.36.5.705-709.1978

Dry-heat destruction of lipopolysaccharide: design and construction of dry-heat destruction apparatus.

J H Robertson, D Gleason, K Tsuji
PMCID: PMC243125  PMID: 727786

Abstract

A dry-heat oven with automatic, multiple-sample introduction and withdrawal has been constructed to achieve instantaneous heating and cooling of samples. The oven temperature fluctuation at set points of 170 to 250 degrees C was +/- 0.1 degrees C, with temperature variation between the replicate samples of +/- 0.2 degrees C. Correction required for a sample come-up time was minimal, i.e., less than 0.25 min of the dry-heat destruction time.

Full text

PDF
705

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderton G., Snell N. Chemical states of bacterial spores: dry-heat resistance. Appl Microbiol. 1969 May;17(5):745–749. doi: 10.1128/am.17.5.745-749.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angelotti R., Maryanski J. H., Butler T. F., Peeler J. T., Campbell J. E. Influence of spore moisture content on the dry-heat resistance of Bacillus subtilis var. niger. Appl Microbiol. 1968 May;16(5):735–745. doi: 10.1128/am.16.5.735-745.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bond W. W., Favero M. S., Petersen N. J., Marshall J. H. Dry-heat inactivation kinetics of naturally occurring spore populations. Appl Microbiol. 1970 Oct;20(4):573–578. doi: 10.1128/am.20.4.573-578.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brannen J. P., Garst D. M. Dry heat inactivation of Bacillus subtilis var. niger spores as a function of relative humidity. Appl Microbiol. 1972 Jun;23(6):1125–1130. doi: 10.1128/am.23.6.1125-1130.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drummond D. W., Pflug I. J. Dry-heat destruction of Bacillus subtilis spores on surfaces: effect of humidity in an open system. Appl Microbiol. 1970 Nov;20(5):805–809. doi: 10.1128/am.20.5.805-809.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fox K., Pflug I. J. Effect of temperature and gas velocity on dry-heat destruction rate of bacterial spores. Appl Microbiol. 1968 Feb;16(2):343–348. doi: 10.1128/am.16.2.343-348.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Molin G., Ostilund K. Dry-heat inactivation of Bacillus subtilis spores by means of infra-red heating. Antonie Van Leeuwenhoek. 1975;41(3):329–335. doi: 10.1007/BF02565067. [DOI] [PubMed] [Google Scholar]
  8. Pheil C. G., Pflug I. J., Nicholas R. C., Augustin J. A. Effect of various gas atmospheres on destruction of microorganisms in dry heat. Appl Microbiol. 1967 Jan;15(1):120–124. doi: 10.1128/am.15.1.120-124.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tsuji K., Harrison S. J. Dry-heat destruction of lipopolysaccharide: dry-heat destruction kinetics. Appl Environ Microbiol. 1978 Nov;36(5):710–714. doi: 10.1128/aem.36.5.710-714.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wegel S. Short time sterilization of glass materials under ultraclean conditions. Bull Parenter Drug Assoc. 1974 May-Jun;28(3):122–135. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES