Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1979 Mar;37(3):605–609. doi: 10.1128/aem.37.3.605-609.1979

Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites.

C G Daughton, A M Cook, M Alexander
PMCID: PMC243262  PMID: 453832

Abstract

Soils that had a high binding capacity for inorganic orthophosphate (Pi) had reduced capacities to bind ionic alkyl phosphorus compounds. Only ionic methylphosphonate (MPn) and ionic phenylphosphonate exhibited moderate binding. Pseudomonas testosteroni used either MPn or Pi as a sole phosphorus source and exhibited diauxic utilization of MPn and Pi. The utilization of MPn was suppressed in the presence of Pi. This suppression was abolished by a Pi-binding soil. The soil did not have a significant effect on the maximum rate of degradation of either MPn or the poorly bound ionic O-isopropyl methylphosphonate, whereas the amount of MPn (but not the amount of O-isopropyl methylphosphonate) metabolized was reduced in the presence of soil

Full text

PDF
605

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cook A. M., Beggs J. D., Fewson C. A. Regulation of growth of Acinetobacter calcoaceticus NCIB8250 on L-mandelate in batch culture. J Gen Microbiol. 1975 Dec;91(2):325–337. doi: 10.1099/00221287-91-2-325. [DOI] [PubMed] [Google Scholar]
  2. Cook A. M., Daughton C. G., Alexander M. Phosphonate utilization by bacteria. J Bacteriol. 1978 Jan;133(1):85–90. doi: 10.1128/jb.133.1.85-90.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cook A. M., Daughton C. G., Alexander M. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl Environ Microbiol. 1978 Nov;36(5):668–672. doi: 10.1128/aem.36.5.668-672.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daughton C. G., Crosby D. G., Garnas R. L., Hsieh D. P. Analysis of phosphorus-containing hydrolytic products of organophosphorus insecticides in water. J Agric Food Chem. 1976 Mar-Apr;24(2):236–241. doi: 10.1021/jf60204a015. [DOI] [PubMed] [Google Scholar]
  5. Daughton C. G., Hsieh D. P. Parathion utilization by bacterial symbionts in a chemostat. Appl Environ Microbiol. 1977 Aug;34(2):175–184. doi: 10.1128/aem.34.2.175-184.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harvey N. L., Fewson C. A., Holms W. H. Apparatus for batch culture of micro-organisms. Lab Pract. 1968 Oct;17(10):1134–1136. [PubMed] [Google Scholar]
  7. Rosenberg H., La Nauze J. M. The metabolism of phosphonates by microorganisms. The transport of aminoethylphosphonic acid in Bacillus cereus. Biochim Biophys Acta. 1967 Jun 13;141(1):79–90. doi: 10.1016/0304-4165(67)90247-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES