Abstract
Direct microscopic measurements of biomass in soil require conversion factors for calculation of the mass of microorganisms from the measured volumes. These factors were determined for two bacteria, five fungi, and a yeast isolated from soil. Moisture stress conditions occurring in nature were simulated by growth in two media using shake cultures, on agar plates, and on membranes held at 34, 330, and 1,390 kPa of suction. The observed conversion factors, i.e., the ratio between dry weight and wet volume, generally increased with increasing moisture stress. The ratios for fungi ranged from 0.11 to 0.41 g/cm3 with an average of 0.33 g/cm3. Correction of earlier data assuming 80% water and a wet-weight specific gravity of 1.1 would require a conversion factor of 1.44. The dry-weight specific gravity of bacteria and yeasts ranged from 0.38 to 1.4 g/cm3 with an average of 0.8 g/cm3. These high values can only occur at 10% ash if no more than 50% of the cell is water, and a specific conversion factor to correct past data for bacterial biomass has not yet been suggested. The high conversion factors for bacteria and yeast could not be explained by shrinkage of cells due to heat fixing, but shrinkage during preparation could not be completely discounted. Moisture stress affected the C, N, and P content of the various organisms, with the ash contents increasing with increasing moisture stress. Although further work is necessary to obtain accurate conversion factors between biovolume and biomass, especially for bacteria, this study clearly indicates that existing data on the specific gravity and the water and nutrient content of microorganisms grown in shake cultures cannot be applied when quantifying the soil microbial biomass.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babiuk L. A., Paul E. A. The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol. 1970 Feb;16(2):57–62. doi: 10.1139/m70-011. [DOI] [PubMed] [Google Scholar]
- Balkwill D. L., Labeda D. P., Casida L. E., Jr Simplified procedures for releasing and concentrating microorganisms from soil for transmission electron microscopy viewing as thin-sectioned and frozen-etched preparations. Can J Microbiol. 1975 Mar;21(3):252–262. doi: 10.1139/m75-036. [DOI] [PubMed] [Google Scholar]
- Casida L. E., Jr Microorganisms in unamended soil as observed by various forms of microscopy and staining. Appl Microbiol. 1971 Jun;21(6):1040–1045. doi: 10.1128/am.21.6.1040-1045.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. G., Simon B. M. An investigation of errors in direct counts of aquatic bacteria by epifluorescence microscopy, with reference to a new method for dyeing membrane filters. J Appl Bacteriol. 1975 Dec;39(3):317–329. doi: 10.1111/j.1365-2672.1975.tb00578.x. [DOI] [PubMed] [Google Scholar]
- Paul E. A., Johnson R. L. Microscopic counting and adenosine 5'-triphosphate measurement in determining microbial growth in soils. Appl Environ Microbiol. 1977 Sep;34(3):263–269. doi: 10.1128/aem.34.3.263-269.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKINNER F. A., JONES P. C., MOLLISON J. E. A comparison of a direct- and a plate counting technique for the quantitative estimation of soil micro-organisms. J Gen Microbiol. 1952 May;6(3-4):261–271. doi: 10.1099/00221287-6-3-4-261. [DOI] [PubMed] [Google Scholar]
