Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1979 May;37(5):972–977. doi: 10.1128/aem.37.5.972-977.1979

Survival of coxsackievirus B3 under diverse environmental conditions.

M L McGeady, J S Siak, R L Crowell
PMCID: PMC243334  PMID: 39495

Abstract

The survival of coxsackievirus B3 was studied under various conditions of incubation. The comparative study demonstrated that coxsackievirus B3 was stable for 24h (less than 0.4-log decrease in titer) when suspended at neutral pH (6 or 23 degrees C) in the presence of 0.25% bovine serum albumin in saline regardless of whether the preparations were subjected to evaporation. Bovine serum albumin provided increased stability to the virus for each of the conditions tested. At 37 degrees C, evaporation greatly reduced the virus infectivity between 6 and 20 h of incubation. Nevertheless, coxsackievirus B3 was found to be stable for at least 24 h under conditions similar to those of a household environment, and its presence represents a potential biohazard to nonimmune persons. These data provide a rationale for using coxsackievirus B3 as a model for investigating the role of environmental surfaces in the transmission of enteroviral diseases.

Full text

PDF
972

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breindl M. The structure of heated poliovirus particles. J Gen Virol. 1971 Jun;11(3):147–156. doi: 10.1099/0022-1317-11-3-147. [DOI] [PubMed] [Google Scholar]
  2. CROWELL R. L., SYVERTON J. T. The mammalian cell-virus relationship. VI. Sustained infection of HeLa cells by Coxsackie B3 virus and effect on superinfection. J Exp Med. 1961 Feb 1;113:419–435. doi: 10.1084/jem.113.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cords C. E., James C. G., McLaren L. C. Alteration of capsid proteins of coxsackievirus A13 by low ionic concentrations. J Virol. 1975 Feb;15(2):244–252. doi: 10.1128/jvi.15.2.244-252.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Couch R. B., Douglas R. G., Jr, Lindgren K. M., Gerone P. J., Knight V. Airborne transmission of respiratory infection with coxsackievirus A type 21. Am J Epidemiol. 1970 Jan;91(1):78–86. doi: 10.1093/oxfordjournals.aje.a121115. [DOI] [PubMed] [Google Scholar]
  5. Crowell R. L., Philipson L. Specific alterations of coxsackievirus B3 eluted from HeLa cells. J Virol. 1971 Oct;8(4):509–515. doi: 10.1128/jvi.8.4.509-515.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dixon G. J., Sidwell R. W., McNeil E. Quantitative studies on fabrics as disseminators of viruses. II. Persistence of poliomyelitis virus on cotton and wool fabrics. Appl Microbiol. 1966 Mar;14(2):183–188. doi: 10.1128/am.14.2.183-188.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Floyd R., Sharp D. G. Aggregation of poliovirus and reovirus by dilution in water. Appl Environ Microbiol. 1977 Jan;33(1):159–167. doi: 10.1128/aem.33.1.159-167.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Floyd R., Sharp D. G. Viral aggregation: effects of salts on the aggregation of poliovirus and reovirus at low pH. Appl Environ Microbiol. 1978 Jun;35(6):1084–1094. doi: 10.1128/aem.35.6.1084-1094.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Floyd R., Sharp D. G. Viral aggregation: quantitation and kinetics of the aggregation of poliovirus and reovirus. Appl Environ Microbiol. 1978 Jun;35(6):1079–1083. doi: 10.1128/aem.35.6.1079-1083.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerba C. P., Wallis C., Melnick J. L. Microbiological hazards of household toilets: droplet production and the fate of residual organisms. Appl Microbiol. 1975 Aug;30(2):229–237. doi: 10.1128/am.30.2.229-237.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hendley J. O., Wenzel R. P., Gwaltney J. M., Jr Transmission of rhinovirus colds by self-inoculation. N Engl J Med. 1973 Jun 28;288(26):1361–1364. doi: 10.1056/NEJM197306282882601. [DOI] [PubMed] [Google Scholar]
  12. Katagiri S., Aikawa S., Hinuma Y. Stepwise degradation of poliovirus capsid by alkaline treatment. J Gen Virol. 1971 Oct;13(1):101–109. doi: 10.1099/0022-1317-13-1-101. [DOI] [PubMed] [Google Scholar]
  13. MURPHY W. H., Jr, EYLAR O. R., SCHMIDT E. L., SYVERTON J. T. Absorption and translocation of mammalian viruses by plants. I. Survival of mouse encephalomyelitis and poliomyelitis viruses in soil and plant root environment. Virology. 1958 Dec;6(3):612–622. doi: 10.1016/0042-6822(58)90110-7. [DOI] [PubMed] [Google Scholar]
  14. Noble J., Lonberg-Holm K. Interactions of components of human rhinovirus type 2 with Hela cells. Virology. 1973 Feb;51(2):270–278. doi: 10.1016/0042-6822(73)90427-3. [DOI] [PubMed] [Google Scholar]
  15. O'Brien R. T., Newman J. S. Inactivation of polioviruses and coxsackieviruses in surface water. Appl Environ Microbiol. 1977 Feb;33(2):334–340. doi: 10.1128/aem.33.2.334-340.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Philipson L., Beatrice S. T., Crowell R. L. A structural model for picornaviruses as suggested from an analysis of urea-degraded virions and procapsids of coxsackievirus B3. Virology. 1973 Jul;54(1):69–79. doi: 10.1016/0042-6822(73)90115-3. [DOI] [PubMed] [Google Scholar]
  17. Smith E. M., Gerba C. P., Melnick J. L. Role of sediment in the persistence of enteroviruses in the estuarine environment. Appl Environ Microbiol. 1978 Apr;35(4):685–689. doi: 10.1128/aem.35.4.685-689.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tierney J. T., Sullivan R., Larkin E. P. Persistence of poliovirus 1 in soil and on vegetables grown in soil previously flooded with inoculated sewage sludge or effluent. Appl Environ Microbiol. 1977 Jan;33(1):109–113. doi: 10.1128/aem.33.1.109-113.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Totsuka A., Ohtaki K., Tagaya I. Aggregation of enterovirus small plaque variants and polioviruses under low ionic strength conditions. J Gen Virol. 1978 Mar;38(3):519–533. doi: 10.1099/0022-1317-38-3-519. [DOI] [PubMed] [Google Scholar]
  20. Ward R. L., Ashley C. S. Identification of the virucidal agent in wastewater sludge. Appl Environ Microbiol. 1977 Apr;33(4):860–864. doi: 10.1128/aem.33.4.860-864.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ward R. L. Mechanism of poliovirus inactivation by ammonia. J Virol. 1978 May;26(2):299–305. doi: 10.1128/jvi.26.2.299-305.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES