Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1979 Jun;37(6):1053–1058. doi: 10.1128/aem.37.6.1053-1058.1979

Production of L-serine by Sarcina albida.

M Ema, T Kakimoto, I Chibata
PMCID: PMC243352  PMID: 39497

Abstract

Conditions for the production of microbial L-serine hydroxymethyltransferase and for the conversion of glycine to L-serine were studied. A number of microorganisms were screened for their abilities to form and accululate L-serine from glycine, and Sarcina albida was selected as the best organism. Enzyme activity in this organism as high as 0.12 U/ml could be produced in shaken cultures at 30 degrees C in a medium containing glucose, ammonium sulfate, glycine, yeast extract, and inorganic salts. L-Serine was produced most efficiently by shaking cells at 30 degrees C in a reaction mixture containing 20% glycine, 5 X 10(-3) M formaldehyde, and 3 X 10(-4) M pyridoxal phosphate in yields of 22 mg of broth in 5 days. L-Serine was easily isolated in 84% yields by ion-exchange resin.

Full text

PDF
1053

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell S. C., Turner J. M. Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine-NAD+ oxidoreductase. Biochem J. 1976 May 15;156(2):449–458. doi: 10.1042/bj1560449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burton E. G., Metzenberg R. L. Regulation of methionine biosythesis in Neurospora crassa. Arch Biochem Biophys. 1975 May;168(1):219–229. doi: 10.1016/0003-9861(75)90244-1. [DOI] [PubMed] [Google Scholar]
  3. Cossins E. A., Combepine G., Turian G. Effects of glycine and serine on serine hydroxymethyltransferase levels in logarithmic cultures of Neurospora crassa Wild type and Ser-1-mutant. Experientia. 1973 Oct 15;29(10):1203–1206. doi: 10.1007/BF01935071. [DOI] [PubMed] [Google Scholar]
  4. Cossins E. A., Sinha S. K. The interconversion of glycine and serine by plant tissue extracts. Biochem J. 1966 Nov;101(2):542–549. doi: 10.1042/bj1010542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Isenberg S., Newman E. B. Studies on L-serine deaminase in Escherichia coli K-12. J Bacteriol. 1974 Apr;118(1):53–58. doi: 10.1128/jb.118.1.53-58.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jungermann K. A., Schmidt W., Kirchniawy F. H., Rupprecht E. H., Thauer R. K. Glycine formation via threonine and serine aldolase. Its interrelation with the pyruvate formate lyase pathway of one-carbon unit synthesis in Clostridium kluyveri. Eur J Biochem. 1970 Nov;16(3):424–429. doi: 10.1111/j.1432-1033.1970.tb01097.x. [DOI] [PubMed] [Google Scholar]
  7. Kochi H., Kikuchi G. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine. Arch Biochem Biophys. 1969 Jul;132(2):359–369. doi: 10.1016/0003-9861(69)90377-4. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. MITOMA C., GREENBERG D. M. Studies on the mechanism of the biosynthesis of serine. J Biol Chem. 1952 May;196(2):599–614. [PubMed] [Google Scholar]
  10. Miller B. A., Newman E. B. Control of serine transhydroxymethylase synthesis in Escherichia coli K12. Can J Microbiol. 1974 Jan;20(1):41–47. doi: 10.1139/m74-007. [DOI] [PubMed] [Google Scholar]
  11. Nakamura K. D., Trewyn R. W., Parks L. W. Purification and characterization of serine transhydroxy-methylase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1973 Dec 19;327(2):328–335. doi: 10.1016/0005-2744(73)90415-4. [DOI] [PubMed] [Google Scholar]
  12. Newman E. B., Batist G., Fraser J., Isenberg S., Weyman P., Kapoor V. The use of glycine as nitrogen source by Escherichia coli K12. Biochim Biophys Acta. 1976 Jan 14;421(1):97–105. doi: 10.1016/0304-4165(76)90173-2. [DOI] [PubMed] [Google Scholar]
  13. O'Connor M. L., Hanson R. S. Serine transhydroxymethylase isoenzymes from a facultative methylotroph. J Bacteriol. 1975 Nov;124(2):985–996. doi: 10.1128/jb.124.2.985-996.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SAGERS R. D., GUNSALUS I. C. Intermediatry metabolism of Diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions. J Bacteriol. 1961 Apr;81:541–549. doi: 10.1128/jb.81.4.541-549.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SIEGEL I., LAFAYE J. Formation of the beta-carbon of serine from formaldehyde. Proc Soc Exp Biol Med. 1950 Jul;74(3):620–623. doi: 10.3181/00379727-74-17995. [DOI] [PubMed] [Google Scholar]
  16. SIEKEVITZ P., GREENBERG D. M. The biological formation of formate from methyl compounds in liver slices. J Biol Chem. 1950 Sep;186(1):275–286. [PubMed] [Google Scholar]
  17. Stauffer G. V., Baker C. A., Brenchley J. E. Regulation of serine transhydroxymethylase activity in Salmonella typhimurium. J Bacteriol. 1974 Dec;120(3):1017–1025. doi: 10.1128/jb.120.3.1017-1025.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stauffer G. V., Brenchley J. E. Evidence for the involvement of serine transhydroxymethylase in serine and glycine interconversions in Salmonella typhimurium. Genetics. 1974 Jun;77(2):185–198. doi: 10.1093/genetics/77.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ulane R., Ogur M. Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces. J Bacteriol. 1972 Jan;109(1):34–43. doi: 10.1128/jb.109.1.34-43.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Uyeda K., Rabinowitz J. C. Enzymes of the clostridial purine fermentation. Serine hydroxymethyltransferase. Arch Biochem Biophys. 1968 Feb;123(2):271–278. doi: 10.1016/0003-9861(68)90134-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES