Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1979 Jul;38(1):119–126. doi: 10.1128/aem.38.1.119-126.1979

Protein-to-wet weight relationships in supragingival plaques from caries-prone tooth surfaces.

M N Gilmour, G Turner, A K Krenzer, L B Zahn, J A Curzon
PMCID: PMC243445  PMID: 485148

Abstract

The ratio of protein to wet weight in unpooled samples of supragingival plaques from sound and carious tooth surfaces was studied. Protein was assayed by a procedure developed for the study, in order to achieve a sensitivity of 1 microgram with minimum effects upon quantitation from protein composition and nonprotein components. Ratios of protein to wet weight in plaque specimens from caries-free surfaces were almost equally distributed into two main categories of 9.4% and 6.5%. Corresponding values for specimens from carious surfaces were 9.1% and 5.0%. The occurrence of high and of low values among samples from each type of surface indicated that the plaques differed quantitatively in protein, water, or a nonprotein component, possibly extracellular polysaccharide. Although compositional differences between plaques from the two types of surfaces were indicated by the lower ratios of 6.5% from noncarious and 5.0% from carious surfaces, they were not indicated by the higher ratio values, which were similar. These results suggest either that protein-to-wet weight ratios are not related to caries, or that the ratio values are related to caries for some but not all types of plaques.

Full text

PDF
119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  2. Boothby D., Daneo-Moore L., Shockman G. D. A rapid, guantitative, and selective estimation of radioactively labeled peptidoglycan in gram-positive bacteria. Anal Biochem. 1971 Dec;44(2):645–653. doi: 10.1016/0003-2697(71)90255-7. [DOI] [PubMed] [Google Scholar]
  3. Butcher E. C., Lowry O. H. Measurement of nanogram quantities of protein by hydrolysis followed by reaction with orthophthalaldehyde or determination of glutamate. Anal Biochem. 1976 Dec;76(2):502–523. doi: 10.1016/0003-2697(76)90343-2. [DOI] [PubMed] [Google Scholar]
  4. CHRISTIAN J. H., WALTHO J. A. THE COMPOSITION OF STAPHYLOCOCCUS AUREUS IN RELATION TO THE WATER ACTIVITY OF THE GROWTH MEDIUM. J Gen Microbiol. 1964 May;35:205–213. doi: 10.1099/00221287-35-2-205. [DOI] [PubMed] [Google Scholar]
  5. Carlsson J., Sundström B. Variations in composition of early dental plaque following ingestion of sucruse and glucose. Odontol Revy. 1968;19(2):161–169. [PubMed] [Google Scholar]
  6. Costerton J. W., Damgaard H. N., Cheng K. J. Cell envelope morphology of rumen bacteria. J Bacteriol. 1974 Jun;118(3):1132–1143. doi: 10.1128/jb.118.3.1132-1143.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curtis M. A., Eastoe J. E. A method for the determination of total nitrogen in small samples of dental plaque. Arch Oral Biol. 1978;23(5):425–426. doi: 10.1016/0003-9969(78)90103-6. [DOI] [PubMed] [Google Scholar]
  8. Dorsey T. E., McDonald P. W., Roels O. A. A heated Biuret-Folin protein assay which gives equal absorbance with different proteins. Anal Biochem. 1977 Mar;78(1):156–164. doi: 10.1016/0003-2697(77)90019-7. [DOI] [PubMed] [Google Scholar]
  9. Eastoe J. E., Bowen W. H. Effects of changes in feeding on the amino acid composition of protein in dental plaque from the monkey, Macaca irus. Caries Res. 1971;5(2):101–110. doi: 10.1159/000259738. [DOI] [PubMed] [Google Scholar]
  10. Gilmour M. N., Poole A. E. Growth stimulation of the mixed microbial flora of human dental plaques by haemin. Arch Oral Biol. 1970 Dec;15(12):1343–1353. doi: 10.1016/0003-9969(70)90022-1. [DOI] [PubMed] [Google Scholar]
  11. Gilmour M. N., Turner G., Berman R. G., Krenzer A. K. Compact liquid nitrogen storage system yielding high recoveries of gram-negative anaerobes. Appl Environ Microbiol. 1978 Jan;35(1):84–88. doi: 10.1128/aem.35.1.84-88.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilmour M. N., Zahn L. B., Turner G. Wet weights of dental plaques. J Dent Res. 1978 Mar;57(3):469–473. doi: 10.1177/00220345780570031101. [DOI] [PubMed] [Google Scholar]
  13. Hamilton P. B., Myoda T. T. Contamination of distilled water, HCl, and NH4OH with amino acids, proteins, and bacteria. Clin Chem. 1974 Jun;20(6):687–691. [PubMed] [Google Scholar]
  14. Hamilton P. B., Nagy B. Problems in the search for amino acids in lunar fines. Space Life Sci. 1972 Oct;3(4):432–438. doi: 10.1007/BF00926772. [DOI] [PubMed] [Google Scholar]
  15. Krembel J., Frank R. M., Deluzarche A. Fractionation of human dental plaques. Arch Oral Biol. 1969 May;14(5):563–565. doi: 10.1016/0003-9969(69)90151-4. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lai C. H., Listgarten M. A., Rosan B. Immunoelectron microscopic identification and localization of Streptococcus sanguis with peroxidase-labeled antibody: localization of Streptococcus sanguis in intact dental plaque. Infect Immun. 1975 Jan;11(1):200–210. doi: 10.1128/iai.11.1.200-210.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Ruminococcus flavefaciens Cell Coat and Adhesion to Cotton Cellulose and to Cell Walls in Leaves of Perennial Ryegrass (Lolium perenne). Appl Environ Microbiol. 1978 Jan;35(1):156–165. doi: 10.1128/aem.35.1.156-165.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Listgarten M. A., Mayo H. E., Tremblay R. Development of dental plaque on epoxy resin crowns in man. A light and electron microscopic study. J Periodontol. 1975 Jan;46(1):10–26. doi: 10.1902/jop.1975.46.1.10. [DOI] [PubMed] [Google Scholar]
  20. Loesche W. J., Rowan J., Straffon L. H., Loos P. J. Association of Streptococcus mutants with human dental decay. Infect Immun. 1975 Jun;11(6):1252–1260. doi: 10.1128/iai.11.6.1252-1260.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luoma H. Bicarbonate-phosphate additions to sugar and plaque weight, total nitrogen and phosphorus. Suom Hammaslaak Toim. 1969;65(4):203–210. [PubMed] [Google Scholar]
  22. Mattingly S. J., Dipersio J. R., Higgins M. L., Shockman G. D. Unbalanced growth and macromolecular synthesis in Streptococcus mutans FA-1. Infect Immun. 1976 Mar;13(3):941–948. doi: 10.1128/iai.13.3.941-948.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melvaer K. L., Helgeland K., Rölla G. A charged component in purified polysaccharide preparations from Streptococcus mutans and Streptococcus sanguis. Arch Oral Biol. 1974 Jul;19(7):589–595. doi: 10.1016/0003-9969(74)90077-6. [DOI] [PubMed] [Google Scholar]
  24. Minah G. E., Loesche W. J. Sucrose metabolism in resting-cell suspensions of caries associated and non-caries-associated dental plaque. Infect Immun. 1977 Jul;17(1):43–54. doi: 10.1128/iai.17.1.43-54.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PARK J. T., HANCOCK R. A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J Gen Microbiol. 1960 Feb;22:249–258. doi: 10.1099/00221287-22-1-249. [DOI] [PubMed] [Google Scholar]
  26. PARVIN R., PANDE S. V., VENKITASUBRAMANIAN T. A. ON THE COLORIMETRIC BIURET METHOD OF PROTEIN DETERMINATION. Anal Biochem. 1965 Aug;12:219–229. doi: 10.1016/0003-2697(65)90085-0. [DOI] [PubMed] [Google Scholar]
  27. Poole A. E., Gilmour M. N. The variability of unstandardized plaques obtained from single or multiple subjects. Arch Oral Biol. 1971 Jul;16(7):681–687. doi: 10.1016/0003-9969(71)90114-2. [DOI] [PubMed] [Google Scholar]
  28. Robrish S. A., Kemp C., Bowen W. H. The use of the o-phthalaldehyde reaction as a sensitive assay for protein and to determine protein in bacterial cells and dental plaque. Anal Biochem. 1978 Jan;84(1):196–204. doi: 10.1016/0003-2697(78)90500-6. [DOI] [PubMed] [Google Scholar]
  29. SALTON M. R. Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochim Biophys Acta. 1953 Apr;10(4):512–523. doi: 10.1016/0006-3002(53)90296-0. [DOI] [PubMed] [Google Scholar]
  30. SILNESS J., LOE H. PERIODONTAL DISEASE IN PREGNANCY. II. CORRELATION BETWEEN ORAL HYGIENE AND PERIODONTAL CONDTION. Acta Odontol Scand. 1964 Feb;22:121–135. doi: 10.3109/00016356408993968. [DOI] [PubMed] [Google Scholar]
  31. Saxton C. A. Determination by electron microscope autoradiography of the distribution in plaque of organisms that synthesize intracellular polysaccharide in situ. Caries Res. 1975;9(6):418–437. doi: 10.1159/000260171. [DOI] [PubMed] [Google Scholar]
  32. Sutherland I. W. Bacterial exopolysaccharides. Adv Microb Physiol. 1972;8:143–213. doi: 10.1016/s0065-2911(08)60190-3. [DOI] [PubMed] [Google Scholar]
  33. Tatevossian A., Gould C. T. Methods for sampling and analysis of the aqueous phase of human dental plaque. Arch Oral Biol. 1976;21(5):313–317. doi: 10.1016/0003-9969(76)90054-6. [DOI] [PubMed] [Google Scholar]
  34. Wiggins P. M. Ionic partition between surface and bulk water in a silica gel. A biological model. Biophys J. 1973 Apr;13(4):385–398. doi: 10.1016/S0006-3495(73)85992-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Houte J., Saxton C. A. Cell wall thickening and intracellular polysaccharide in microorganisms of the dental plaque. Caries Res. 1971;5(1):30–43. doi: 10.1159/000259730. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES