Abstract
Bile acids and their glycine and taurine conjugates were tested in vitro for inhibition of Clostridium botulinum types A and B. Cholic acid inhibited most strains at 2 mg/ml, whereas chenodeoxycholic acid inhibited all strains at 0.4 mg/ml. Deoxycholic acid inhibited one strain at 0.08 mg/ml and other strains at 0.4 and 2 mg/ml. Lithocholic acid inhibited all strains at 0.016 mg/ml. Glycine conjugates also showed considerable inhibition of some strains, whereas taurine conjugates were inactive.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BONGIOVANNI A. M. BILE ACID CONTENT OF GALLBLADDER OF INFANTS, CHILDREN AND ADULTS. J Clin Endocrinol Metab. 1965 May;25:678–685. doi: 10.1210/jcem-25-5-678. [DOI] [PubMed] [Google Scholar]
- Donaldson R. M., Jr Significance of small bowel bacteria. Am J Clin Nutr. 1968 Sep;21(9):1088–1096. doi: 10.1093/ajcn/21.9.1088. [DOI] [PubMed] [Google Scholar]
- Floch M. H., Gershengoren W., Elliott S., Spiro H. M. Bile acid inhibition of the intestinal microflora--a function for simple bile acids? Gastroenterology. 1971 Aug;61(2):228–233. [PubMed] [Google Scholar]
- Gorbach S. L., Tabaqchali S. Bacteria, bile, and the small bowel. Gut. 1969 Dec;10(12):963–972. doi: 10.1136/gut.10.12.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Midura T. F., Arnon S. S. Infant botulism. Identification of Clostridium botulinum and its toxins in faeces. Lancet. 1976 Oct 30;2(7992):934–936. doi: 10.1016/s0140-6736(76)90894-1. [DOI] [PubMed] [Google Scholar]
- Mower H. F., Ray R. M., Stemmermann G. N., Nomura A., Glober G. A. Analysis of fecal bile acids and diet among the Japanese in Hawaii. J Nutr. 1978 Aug;108(8):1289–1296. doi: 10.1093/jn/108.8.1289. [DOI] [PubMed] [Google Scholar]
- Nielsen M. L., Justesen T. Anaerobic and aerobic bacteriological studies in biliary tract disease. Scand J Gastroenterol. 1976;11(5):437–446. [PubMed] [Google Scholar]
- Norman A., Strandvik B. Metabolism of lithocholic acid-24-14C in extrahepatic biliary atresia. Acta Paediatr Scand. 1974 Jan;63(1):92–96. doi: 10.1111/j.1651-2227.1974.tb04354.x. [DOI] [PubMed] [Google Scholar]
- Norman A., Strandvik B., Ojamäe O. Bile acids and pancreatic enzymes during absorption in the newborn. Acta Paediatr Scand. 1972 Sep;61(5):571–576. doi: 10.1111/j.1651-2227.1972.tb15947.x. [DOI] [PubMed] [Google Scholar]
- Pickett J., Berg B., Chaplin E., Brunstetter-Shafer M. A. Syndrome of botulism in infancy: clinical and electrophysiologic study. N Engl J Med. 1976 Sep 30;295(14):770–772. doi: 10.1056/NEJM197609302951407. [DOI] [PubMed] [Google Scholar]
- Shimada K., Inamatsu T., Yamashiro M. Anaerobic bacteria in biliary disease in elderly patients. J Infect Dis. 1977 May;135(5):850–854. doi: 10.1093/infdis/135.5.850. [DOI] [PubMed] [Google Scholar]
- Suzuki R. Influence of intestinal microorganisms on the metabolism of bile acids in mice. Keio J Med. 1970 Jun;19(2):73–86. doi: 10.2302/kjm.19.73. [DOI] [PubMed] [Google Scholar]
- Tabaqchali S., Booth C. C. Jejunal bacteriology and bile-salt metabolism in patients with intestinal malabsorption. Lancet. 1966 Jul 2;2(7453):12–15. doi: 10.1016/s0140-6736(66)91744-2. [DOI] [PubMed] [Google Scholar]
- Williams R. C., Showalter R., Kern F., Jr In vivo effect of bile salts and cholestyramine on intestinal anaerobic bacteria. Gastroenterology. 1975 Aug;69(2):483–491. [PubMed] [Google Scholar]
