Abstract
After 6 months of incubation in a fertile neutral sandy loam, about 48% of the ring carbons and 2-carbons and 60% of the OCH3 carbons of specifically labeled coniferyl alcohol had evolved as CO2. After 1 year, corresponding values were 55 and 65%. When coniferyl alcohol units were linked into model and cornstalk lignins, about 23% of the ring carbons and 2-carbons and 39% of the OCH3 carbons had evolved as CO2 after 6 months. After 1 year, corresponding values were about 28 and 46%. The addition of orange leaves (0.5%, wt/wt) after 6 months did not significantly increase the evolution of 14CO2. Addition of orange leaves (0.5%, wt/wt) with specifically 14C-labeled pyrocatechol, coumaryl alcohol, model lignins, humic acid-type phenolic polymers and of uniformly 14C-labeled fungal melanins did not increase labeled C losses or C losses from the orange leaves. Decomposition of protein and pyrocatechol linked into model humic acid polymers, coniferyl alcohol C in model lignins, and Eurotium echinulatum melanin in six soils varied from 2 to 14%. Significant differences in C losses were related to soils and were not influenced by orange leaf applications.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crawford D. L., Crawford R. L. Microbial degradation of lignocellulose: the lignin component. Appl Environ Microbiol. 1976 May;31(5):714–717. doi: 10.1128/aem.31.5.714-717.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]