Abstract
Anabaena inaequalis was sensitive to mercuric ion (Hg2+) in the ppb (nanogram per milliliter) range. Growth was inhibited significantly at concentrations of metal ion as low as 2 ppb, and 100 ppb was required to inhibit photosynthesis and acetylene reduction. Low levels of Hg2+ stimulated acetylene reduction and photosynthesis. The lysis of vegetative cells was the primary action of mercuric ions, resulting in the inhibition of growth, photosynthesis, and nitrogenase activity. There was a linear relationship between numbers of cells and the amount of Hg2+ required to induce culture lysis. Calculated on the basis of equivalent cell numbers, Hg2+ was toxic to A. inaequalis at 0.006, 0.009, and 0.100 micrograms of Hg2+ per 10(5) cells for photosynthesis, growth, and acetylene reduction, respectively.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berland B. R., Bonin D. J., Kapkov V. I., Maestrini S. Y., Arlhac D. P. Action toxique de quatre métaux lourds sur la croissance d'algues unicellulaires marines. C R Acad Sci Hebd Seances Acad Sci D. 1976 Feb 16;282(7):633–636. [PubMed] [Google Scholar]
- Bradeen D. A., Winget G. D. Site-specific Inhibition of Photophosphorylation in Isolated Spinach Chloroplasts by Mercuric Chloride. Plant Physiol. 1973 Dec;52(6):680–682. doi: 10.1104/pp.52.6.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cedeno-Maldonado A., Swader J. A. The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts. Plant Physiol. 1972 Dec;50(6):698–701. doi: 10.1104/pp.50.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooren de Jong Tolerance of Chlorella vulgaris for metallic and non-metallic ions. Antonie Van Leeuwenhoek. 1965;31(3):301–313. doi: 10.1007/BF02045910. [DOI] [PubMed] [Google Scholar]
- Fujita M., Takabatake E., Iwasaki K. Effects of light, magnesium, and cyanide on accumulation of mercury by a fresh water diatom, Synedra. Bull Environ Contam Toxicol. 1976 Aug;16(2):164–172. doi: 10.1007/BF01685223. [DOI] [PubMed] [Google Scholar]
- Harriss R. C., White D. B., Macfarlane R. B. Mercury compounds reduce photosynthesis by plankton. Science. 1970 Nov 13;170(3959):736–737. doi: 10.1126/science.170.3959.736. [DOI] [PubMed] [Google Scholar]
- Horne A. J., Goldman C. R. Suppression of nitrogen fixation by blue-green algae in a eutrophic lake with trace additions of copper. Science. 1974 Feb 1;183(4123):409–411. doi: 10.1126/science.183.4123.409. [DOI] [PubMed] [Google Scholar]
- Nuzzi R. Toxicity of mercury to phytoplankton. Nature. 1972 May 5;237(5349):38–40. doi: 10.1038/237038a0. [DOI] [PubMed] [Google Scholar]
- PASSOW H., ROTHSTEIN A., CLARKSON T. W. The general pharmacology of the heavy metals. Pharmacol Rev. 1961 Jun;13:185–224. [PubMed] [Google Scholar]
- Rice H. V., Leighty D. A., McLeod G. C. The effects of some trace metals on marine phytoplankton. CRC Crit Rev Microbiol. 1973 Sep;3(1):27–48. doi: 10.3109/10408417309108744. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee B. L., Ulmer D. D. Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem. 1972;41(10):91–128. doi: 10.1146/annurev.bi.41.070172.000515. [DOI] [PubMed] [Google Scholar]