Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1979 Oct;38(4):599–605. doi: 10.1128/aem.38.4.599-605.1979

Gas chromatographic analysis of in situ cyclitol utilization by Klebsielleae growing in redwood extracts.

H W Talbot Jr, R J Seidler
PMCID: PMC243546  PMID: 539819

Abstract

Gas chromatographic analysis was employed to demonstrate in situ cyclitol utilization in aqueous extracts of redwood by isolates of Klebsiella, Enterobacter, and several other genera of gram-negative bacteria. In aqueous redwood extracts, all but one of the Klebsiella and Enterobacter isolates tested reached densities exceeding 5.0 x 10(6) cells/ml within 4 days, and all utilized pinitol and sequoyitol. Other enteric bacteria did not utilize cyclitols in this extract. A defined minimal medium, containing the carbohydrates and cyclitols (including myo-inositol) in redwood, was used to determine which carbon sources are preferentially utilized by Klebsielleae and other bacteria. It was found that D-glucose and L-arabinose were consumed by Klebsiella before the three cyclitols were utilized. Pinitol utilization proceeded in more slowly than that of sequoyitol and myo-inositol. Cyclitol utilization in the defined medium was also observed for Yersinia, Erwinia, and Salmonella. Escherichia coli isolates did not utilize cyclitol compounds. The ability to use cyclitols as a sole source of carbon can explain the high cell densities of Klebsielleae in redwood water reservoirs and in redwood lumber.

Full text

PDF
599

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A., Magasanik B. The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates. J Biol Chem. 1971 Sep 25;246(18):5662–5675. [PubMed] [Google Scholar]
  2. Bagley S. T., Seidler R. J. Significance of fecal coliform-positive Klebsiella. Appl Environ Microbiol. 1977 May;33(5):1141–1148. doi: 10.1128/aem.33.5.1141-1148.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagley S. T., Seidler R. J., Talbot H. W., Jr, Morrow J. E. Isolation of Klebsielleae from within living wood. Appl Environ Microbiol. 1978 Jul;36(1):178–185. doi: 10.1128/aem.36.1.178-185.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown C., Seidler R. J. Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Appl Microbiol. 1973 Jun;25(6):900–904. doi: 10.1128/am.25.6.900-904.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dufour A. P., Cabelli V. J. Charateristics of Klebsiella from textile finishing plant effluents. J Water Pollut Control Fed. 1976 May;48(5):872–879. [PubMed] [Google Scholar]
  6. Duncan D. W., Razzell W. E. Klebsiella biotypes among coliforms isolated from forest environments and farm produce. Appl Microbiol. 1972 Dec;24(6):933–938. doi: 10.1128/am.24.6.933-938.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huntley B. E., Jones A. C., Cabelli V. J. Klebsiella densities in waters receiving wood pulp effluents. J Water Pollut Control Fed. 1976 Jul;48(7):1766–1771. [PubMed] [Google Scholar]
  8. Knowles R., Neufeld R., Simpson S. Acetylene reduction (nitrogen fixation) by pulp and paper mill effluents and by Klebsiella isolated from effluents and environmental situations. Appl Microbiol. 1974 Oct;28(4):608–613. doi: 10.1128/am.28.4.608-613.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pedersen W. L., Chakrabarty K., Klucas R. V., Vidaver A. K. Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl Environ Microbiol. 1978 Jan;35(1):129–135. doi: 10.1128/aem.35.1.129-135.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Seidler R. J., Knittel M. D., Brown C. Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol. 1975 Jun;29(6):819–825. doi: 10.1128/am.29.6.819-825.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Seidler R. J., Morrow J. E., Bagley S. T. Klebsielleae in drinking water emanating from redwood tanks. Appl Environ Microbiol. 1977 Apr;33(4):893–900. doi: 10.1128/aem.33.4.893-900.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sundaram T. K. Regulation of myo-inositol catabolism in Aerobacter aerogenes. J Bacteriol. 1972 Jul;111(1):284–286. doi: 10.1128/jb.111.1.284-286.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wright C., Kominos S. D., Yee R. B. Enterobacteriaceae and Pseudomonas aeruginosa recovered from vegetable salads. Appl Environ Microbiol. 1976 Mar;31(3):453–454. doi: 10.1128/aem.31.3.453-454.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES