Abstract
The biodegradation of radiochemically pure (99%) 1,2,3- and 1,2,4-trichlorobenzene (TCB) in soil was investigated. Experimental difficulties posed by the high volatility and slow biodegradation rate of the TCBs were partially overcome by using a specially designed incubation and trapping apparatus. Evolution of 14CO2 from active versus poisoned soil dosed with 50 μg of the individual TCBs per g gave conclusive proof that both isomers are biodegradable. At 20°C, 1,2,4-TCB was mineralized at an approximate rate of 1 nmol/day per 20 g of soil sample, and 1,2,3-TCB was mineralized at one-half to one-third that rate. Mineral fertilizers or cosubstrates failed to increase TCB mineralization rates in soil. Anaerobic conditions had a negative effect on mineralization, and increased temperatures had a positive effect. With increasing 1,2,4-TCB concentrations, 14CO2 evolution exhibited saturation kinetics with an apparent Km of 55.5 nmol per g of soil. Recovery of total radioactivity was good from soil containing high organic matter concentrations. From low-organic-matter soil, some of the radioactivity was recovered only on combustion, and overall recovery was lower. In soil-inoculated liquid culture, the cosubstrates glucose and benzene caused a slight stimulation of 1,2,4-TCB mineralization. Cochromatography of known standards with the extracts of soil pretreated with [14C]TCBs indicated that 3,4,5-trichlorophenol, 2,6-dichlorophenol and, to a lesser degree, 2,3-dichlorophenol were present in soils incubated with 1,2,3-TCB. 2,4-, 2,5-, and 3,4-dichlorophenol were present in soils incubated with 1,2,4-TCB.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballschmiter K., Unglert C., Heinzmann P. Formation of chlorophenols by microbial transformation of chlorobenzenes. Angew Chem Int Ed Engl. 1977 Sep;16(9):645–645. doi: 10.1002/anie.197706451. [DOI] [PubMed] [Google Scholar]
- Bollag J. M. Microbial transformation of pesticides. Adv Appl Microbiol. 1974;18(0):75–130. doi: 10.1016/s0065-2164(08)70570-7. [DOI] [PubMed] [Google Scholar]
- Chu J. P., Kirsch E. J. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol. 1972 May;23(5):1033–1035. doi: 10.1128/am.23.5.1033-1035.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson D. T., Mahadevan V., Jerina D. M., Yogi H., Yeh H. J. Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science. 1975 Jul 25;189(4199):295–297. doi: 10.1126/science.1145203. [DOI] [PubMed] [Google Scholar]
- Haider K., Jagnow G., Kohnen R., Lim S. U. Abbau chlorierter Benzole, Phenole und Cyclohexan-Derivate durch Benzol und Phenol verwertende Bodenbakterien unter aeroben Bedingungen. Arch Microbiol. 1974 Mar 7;96(3):183–200. doi: 10.1007/BF00590175. [DOI] [PubMed] [Google Scholar]
- Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knackmuss H. J., Beckmann W., Dorn E., Reineke W. Zum Mechanismus der biologischen Persistenz von halogenierten und sulfonierten aromatischen Kohlenwasserstoffen. Zentralbl Bakteriol Orig B. 1976 Jul;162(1-2):127–137. [PubMed] [Google Scholar]
- Marinucci A. C., Bartha R. Apparatus for monitoring the mineralization of volatile C-labeled compounds. Appl Environ Microbiol. 1979 Nov;38(5):1020–1022. doi: 10.1128/aem.38.5.1020-1022.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sethunathan N. Microbial degradation of insecticides in flooded soil and in anaerobic cultures. Residue Rev. 1973;47:143–165. doi: 10.1007/978-1-4615-8488-9_3. [DOI] [PubMed] [Google Scholar]