Abstract
Superoxide dismutase (SOD) activity was determined during the growth cycle of unheated and heat-injured cells of Staphylococcus aureus MF-31. SOd activity levels dropped in unheated cells during the lag phase, increased during logarithmic phase, and became constant in the stationary phase. Cells which were sublethally heated (52 degrees c, 20 min) in 100 mM phosphate buffer and subsequently allowed to recover in tryptic soy broth demonstrated an 85% decrease in SOD activity upon inoculation into recovery medium. As the injured cells repaired the heat-induced lesions and entered logarithmic growth, SOD levels rapidly increased. Heat-injured cells allowed to recover in tryptic soy broth plus 10% NaCl showed similar decreases in SOD activity levels. However, no subsequent increase was observed when specific activity was calculated based on milligrams of protein.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allwood M. C., Russell A. D. Mechanisms of thermal injury in nonsporulating bacteria. Adv Appl Microbiol. 1970;12:89–119. doi: 10.1016/s0065-2164(08)70583-5. [DOI] [PubMed] [Google Scholar]
- Andrews G. P., Martin S. E. Catalase activity during the recovery of heat-stressed Staphylococcus aureus MF-31. Appl Environ Microbiol. 1979 Sep;38(3):390–394. doi: 10.1128/aem.38.3.390-394.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrews G. P., Martin S. E. Heat inactivation of catalase from Staphylococcus aureus MF-31. Appl Environ Microbiol. 1979 Jun;37(6):1180–1185. doi: 10.1128/aem.37.6.1180-1185.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bluhm L., Ordal Z. J. Effect of sublethal heat on the metabolic activity of Staphylococcus aureus. J Bacteriol. 1969 Jan;97(1):140–150. doi: 10.1128/jb.97.1.140-150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton L., Malinowski D. P., Fridovich I. Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms. J Bacteriol. 1978 Apr;134(1):229–236. doi: 10.1128/jb.134.1.229-236.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bucker E. R., Martin S. E. Superoxide dismutase activity in thermally stressed Staphylococcus aureus. Appl Environ Microbiol. 1981 Feb;41(2):449–454. doi: 10.1128/aem.41.2.449-454.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flowers R. S., Martin S. E., Brewer D. G., Ordal Z. J. Catalase and enumeration of stressed Staphylococcus aureus cells. Appl Environ Microbiol. 1977 May;33(5):1112–1117. doi: 10.1128/aem.33.5.1112-1117.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flowers R. S., Martin S. E. Ribosome assembly during recovery of heat-injured Staphylococcus aureus cells. J Bacteriol. 1980 Feb;141(2):645–651. doi: 10.1128/jb.141.2.645-651.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomez R., Takano M., Sinskey A. J. Proceedings: Characteristics of freeze-dried cells. Cryobiology. 1973 Nov;10(5):368–374. doi: 10.1016/0011-2240(73)90060-6. [DOI] [PubMed] [Google Scholar]
- Hassan H. M., Fridovich I. Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli. J Bacteriol. 1977 Mar;129(3):1574–1583. doi: 10.1128/jb.129.3.1574-1583.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iandolo J. J., Ordal Z. J. Repair of thermal injury of Staphylococcus aureus. J Bacteriol. 1966 Jan;91(1):134–142. doi: 10.1128/jb.91.1.134-142.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Martin S. E., Flowers R. S., Ordal Z. J. Catalase: its effect on microbial enumeration. Appl Environ Microbiol. 1976 Nov;32(5):731–734. doi: 10.1128/aem.32.5.731-734.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Pierson M. D., Gomez R. F., Martin S. E. The involvement of nucleic acids in bacterial injury. Adv Appl Microbiol. 1978;23:263–285. doi: 10.1016/s0065-2164(08)70073-x. [DOI] [PubMed] [Google Scholar]
- Przybylski K. S., Witter L. D. Injury and recovery of Escherichia coli after sublethal acidification. Appl Environ Microbiol. 1979 Feb;37(2):261–265. doi: 10.1128/aem.37.2.261-265.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray B., Speck M. L. Freeze-injury in bacteria. CRC Crit Rev Clin Lab Sci. 1973 Aug;4(2):161–213. doi: 10.3109/10408367309151556. [DOI] [PubMed] [Google Scholar]
- Scheusner D. L., Busta F. F., Speck M. L. Injury of bacteria by sanitizers. Appl Microbiol. 1971 Jan;21(1):41–45. doi: 10.1128/am.21.1.41-45.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sogin S. J., Ordal Z. J. Regeneration of ribosomes and ribosomal ribonucleic acid during repair of thermal injury to Staphylococcus. J Bacteriol. 1967 Oct;94(4):1082–1087. doi: 10.1128/jb.94.4.1082-1087.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlins R. I., Pierson M. D., Ordal Z. J. Effect of thermal injury on the TCA cycle enzymes of Staphylococcus aureus MF 31 and Salmonella typhimurium 7136. Can J Microbiol. 1971 Jun;17(6):759–765. doi: 10.1139/m71-121. [DOI] [PubMed] [Google Scholar]
