Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1981 Mar;41(3):826–828. doi: 10.1128/aem.41.3.826-828.1981

Syntrophic association of a butyrate-degrading bacterium and methanosarcina enriched from bovine rumen fluid.

M J McInerney, R I Mackie, M P Bryant
PMCID: PMC243782  PMID: 7224635

Abstract

An anaerobic butyrate-degrading bacterium, morphologically similar to Syntrophomonas wolfei, was isolated in coculture with Desulfovibrio strain G11 from an enrichment of bovine rumen fluid. A Methanosarcina species was the major H2-using organism in the enrichment. The results are discussed in relationship to the absence of Methanospirillum hungatei, the H2-using methanogen usually found in association with S. wolfei, and the finding of Methanosarcina rather than Methanobrevibacter ruminantium as the major H2-using bacterium in the enrichments. The finding of butyrate degraders in the rumen suggests that, if the retention time of the rumen contents becomes more prolonged, butyrate and longer-chained fatty acids might be significantly degraded.

Full text

PDF
826

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boone D. R., Bryant M. P. Propionate-Degrading Bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from Methanogenic Ecosystems. Appl Environ Microbiol. 1980 Sep;40(3):626–632. doi: 10.1128/aem.40.3.626-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
  3. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol. 1967;59(1):20–31. doi: 10.1007/BF00406313. [DOI] [PubMed] [Google Scholar]
  4. Kaspar H. F., Wuhrmann K. Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol. 1978 Jul;36(1):1–7. doi: 10.1128/aem.36.1.1-7.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. OPPERMANN R. A., NELSON W. O., BROWN R. E. In vivo studies of methanogenesis in the bovine rumen: dissimilation of acetate. J Gen Microbiol. 1961 May;25:103–111. doi: 10.1099/00221287-25-1-103. [DOI] [PubMed] [Google Scholar]
  6. Rowe J. B., Loughnan M. L., Nolan J. V., Leng R. A. Secondary fermentation in the runen of a sheep given a diet based on molasses. Br J Nutr. 1979 Mar;41(2):393–397. doi: 10.1079/bjn19790048. [DOI] [PubMed] [Google Scholar]
  7. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wolin E. A., Wolfe R. S., Wolin M. J. Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol. 1964 May;87(5):993–998. doi: 10.1128/jb.87.5.993-998.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zhilina T. N. Biotipy metanosartsiny. Mikrobiologiia. 1976 May-Jun;45:481–489. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES