Abstract
Three classes of mutants, deregulated to enhance the flow of aromatic intermediates through the tryptophan biosynthetic branch, were obtained. 5-Fluorotryptophan, an antimetabolite of tryptophan, was employed to obtain one class of deregulated mutants. By sequential resistance development, three resistant mutants were isolated. Hansenula polymorpha strains showed greater sensitivity to 5-fluorotryptophan when growing on methanol than when growing on glucose. Yeast extract stimulated the production of total indole metabolites (indoles) by wild-type and mutant strains, with each 5-fluorotryptophan mutant producing higher amounts of these metabolites than its predecessor. Two other mutant classes were isolated: (i) a mutant resistant to anthranilate (an inhibitory intermediate in the tryptophan biosynthetic branch) and (ii) a phenylalanine-plus-tyrosine bradytroph. Each of these produced a higher extracellular titer of total indoles than its immediate parent. With respect to the overproduction of indoles, resistance to 5-fluorotryptophan was a more useful selection method than were anthranilate resistance and phenylalanine-plus-tyrosine bradytrophy.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Calhoun D. H., Jensen R. A. Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa. J Bacteriol. 1972 Jan;109(1):365–372. doi: 10.1128/jb.109.1.365-372.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DICKMAN S. R., CROCKETT A. L. Reactions of xanthydrol. IV. Determination of tryptophan in blood plasma and in proteins. J Biol Chem. 1956 Jun;220(2):957–965. [PubMed] [Google Scholar]
- Doy C. H. Aromatic biosynthesis in yeast. II. Feedback inhibition and repression of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Biochim Biophys Acta. 1968 Jan 8;151(1):293–295. doi: 10.1016/0005-2744(68)90190-3. [DOI] [PubMed] [Google Scholar]
- Doy C. H., Cooper J. M. Aromatic biosynthesis in yeast. I. The synthesis of tryptophan and the regulation of this pathway. Biochim Biophys Acta. 1966 Oct 31;127(2):302–316. [PubMed] [Google Scholar]
- Fantes P. A., Roberts L. M., Huetter R. Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae. Arch Microbiol. 1976 Mar 19;107(2):207–214. doi: 10.1007/BF00446842. [DOI] [PubMed] [Google Scholar]
- Grenson M., Hou C. Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of saccharomyces cerevisiae. Biochem Biophys Res Commun. 1972 Aug 21;48(4):749–756. doi: 10.1016/0006-291x(72)90670-5. [DOI] [PubMed] [Google Scholar]
- Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Held W. A., Smith O. H. Mechanism of 3-methylanthranilic acid derepression of the tryptophan operon in Escherichia coli. J Bacteriol. 1970 Jan;101(1):209–217. doi: 10.1128/jb.101.1.209-217.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Held W. A., Smith O. H. Regulation of the Escherichia coli tryptophan operon by early reactions in the aromatic pathway. J Bacteriol. 1970 Jan;101(1):202–208. doi: 10.1128/jb.101.1.202-208.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemontt J. F. Induction of forward mutations in mutationally defective yeast. Mol Gen Genet. 1972;119(1):27–42. doi: 10.1007/BF00270441. [DOI] [PubMed] [Google Scholar]
- Levine D. W., Cooney C. L. Isolation and characterization of a thermotolerant methanol-utilizing yeast. Appl Microbiol. 1973 Dec;26(6):982–990. doi: 10.1128/am.26.6.982-990.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingens F., Goebel W., Uesseler H. Regulation der Biosynthese der aromatischen Aminosäuren in Saccharomyces cerevisiae. 2. Repression, Induktion und Aktivierung. Eur J Biochem. 1967 May;1(3):363–374. doi: 10.1111/j.1432-1033.1967.tb00083.x. [DOI] [PubMed] [Google Scholar]
- Roon R. J., Larimore F., Levy J. S. Inhibition of amino acid transport by ammonium ion in Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):325–331. doi: 10.1128/jb.124.1.325-331.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez S., Cea A., Flores M. E. Selective enrichment of aromatic amino acid auxotrophs in Hansenula polymorpha. Appl Environ Microbiol. 1978 Feb;35(2):228–230. doi: 10.1128/aem.35.2.228-230.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schürch A., Miozzari J., Hütter R. Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J Bacteriol. 1974 Mar;117(3):1131–1140. doi: 10.1128/jb.117.3.1131-1140.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strom T., Ferenci T., Quayle J. R. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J. 1974 Dec;144(3):465–476. doi: 10.1042/bj1440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veenhuis M., van Dijken J. P., Harder W. Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grown Hansenula polymorpha. Arch Microbiol. 1976 Dec 1;111(1-2):123–135. doi: 10.1007/BF00446559. [DOI] [PubMed] [Google Scholar]
- Wagner F. Methanol: a fermentation substrate. Experientia. 1977 Jan 15;33(1):110–113. doi: 10.1007/BF01936782. [DOI] [PubMed] [Google Scholar]
- van Dijken J. P., Oostra-Demkes G. J., Otto R., Harder W. S-formylgluthathione: the substrate for formate dehydrogenase in methanol-utilizing yeasts. Arch Microbiol. 1976 Dec 1;111(1-2):77–83. doi: 10.1007/BF00446552. [DOI] [PubMed] [Google Scholar]
- van Dijken J. P., Otto R., Harder W. Oxidation of methanol, formaldehyde and formate by catalase purified from methanol-grown Hansenula polymorpha. Arch Microbiol. 1975 Dec 31;106(3):221–226. doi: 10.1007/BF00446527. [DOI] [PubMed] [Google Scholar]
- van Dijken J. P., Veenhuis M., Vermeulen C. A., Harder W. Cytochemical localization of catalase activity in methanol-grown Hansenula polymorpha. Arch Microbiol. 1975 Nov 7;105(3):261–267. doi: 10.1007/BF00447145. [DOI] [PubMed] [Google Scholar]
