Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1981 May;41(5):1088–1096. doi: 10.1128/aem.41.5.1088-1096.1981

Derivation of Aromatic Amino Acid Mutants from a Methanol-Utilizing Yeast, Hansenula polymorpha

Emmanuel O Denenu 1,, Arnold L Demain 1
PMCID: PMC243872  PMID: 16345763

Abstract

Three classes of mutants, deregulated to enhance the flow of aromatic intermediates through the tryptophan biosynthetic branch, were obtained. 5-Fluorotryptophan, an antimetabolite of tryptophan, was employed to obtain one class of deregulated mutants. By sequential resistance development, three resistant mutants were isolated. Hansenula polymorpha strains showed greater sensitivity to 5-fluorotryptophan when growing on methanol than when growing on glucose. Yeast extract stimulated the production of total indole metabolites (indoles) by wild-type and mutant strains, with each 5-fluorotryptophan mutant producing higher amounts of these metabolites than its predecessor. Two other mutant classes were isolated: (i) a mutant resistant to anthranilate (an inhibitory intermediate in the tryptophan biosynthetic branch) and (ii) a phenylalanine-plus-tyrosine bradytroph. Each of these produced a higher extracellular titer of total indoles than its immediate parent. With respect to the overproduction of indoles, resistance to 5-fluorotryptophan was a more useful selection method than were anthranilate resistance and phenylalanine-plus-tyrosine bradytrophy.

Full text

PDF
1088

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calhoun D. H., Jensen R. A. Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa. J Bacteriol. 1972 Jan;109(1):365–372. doi: 10.1128/jb.109.1.365-372.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DICKMAN S. R., CROCKETT A. L. Reactions of xanthydrol. IV. Determination of tryptophan in blood plasma and in proteins. J Biol Chem. 1956 Jun;220(2):957–965. [PubMed] [Google Scholar]
  3. Doy C. H. Aromatic biosynthesis in yeast. II. Feedback inhibition and repression of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Biochim Biophys Acta. 1968 Jan 8;151(1):293–295. doi: 10.1016/0005-2744(68)90190-3. [DOI] [PubMed] [Google Scholar]
  4. Doy C. H., Cooper J. M. Aromatic biosynthesis in yeast. I. The synthesis of tryptophan and the regulation of this pathway. Biochim Biophys Acta. 1966 Oct 31;127(2):302–316. [PubMed] [Google Scholar]
  5. Fantes P. A., Roberts L. M., Huetter R. Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae. Arch Microbiol. 1976 Mar 19;107(2):207–214. doi: 10.1007/BF00446842. [DOI] [PubMed] [Google Scholar]
  6. Grenson M., Hou C. Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of saccharomyces cerevisiae. Biochem Biophys Res Commun. 1972 Aug 21;48(4):749–756. doi: 10.1016/0006-291x(72)90670-5. [DOI] [PubMed] [Google Scholar]
  7. Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Held W. A., Smith O. H. Mechanism of 3-methylanthranilic acid derepression of the tryptophan operon in Escherichia coli. J Bacteriol. 1970 Jan;101(1):209–217. doi: 10.1128/jb.101.1.209-217.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Held W. A., Smith O. H. Regulation of the Escherichia coli tryptophan operon by early reactions in the aromatic pathway. J Bacteriol. 1970 Jan;101(1):202–208. doi: 10.1128/jb.101.1.202-208.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lemontt J. F. Induction of forward mutations in mutationally defective yeast. Mol Gen Genet. 1972;119(1):27–42. doi: 10.1007/BF00270441. [DOI] [PubMed] [Google Scholar]
  11. Levine D. W., Cooney C. L. Isolation and characterization of a thermotolerant methanol-utilizing yeast. Appl Microbiol. 1973 Dec;26(6):982–990. doi: 10.1128/am.26.6.982-990.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lingens F., Goebel W., Uesseler H. Regulation der Biosynthese der aromatischen Aminosäuren in Saccharomyces cerevisiae. 2. Repression, Induktion und Aktivierung. Eur J Biochem. 1967 May;1(3):363–374. doi: 10.1111/j.1432-1033.1967.tb00083.x. [DOI] [PubMed] [Google Scholar]
  13. Roon R. J., Larimore F., Levy J. S. Inhibition of amino acid transport by ammonium ion in Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):325–331. doi: 10.1128/jb.124.1.325-331.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanchez S., Cea A., Flores M. E. Selective enrichment of aromatic amino acid auxotrophs in Hansenula polymorpha. Appl Environ Microbiol. 1978 Feb;35(2):228–230. doi: 10.1128/aem.35.2.228-230.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schürch A., Miozzari J., Hütter R. Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J Bacteriol. 1974 Mar;117(3):1131–1140. doi: 10.1128/jb.117.3.1131-1140.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Strom T., Ferenci T., Quayle J. R. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J. 1974 Dec;144(3):465–476. doi: 10.1042/bj1440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Veenhuis M., van Dijken J. P., Harder W. Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grown Hansenula polymorpha. Arch Microbiol. 1976 Dec 1;111(1-2):123–135. doi: 10.1007/BF00446559. [DOI] [PubMed] [Google Scholar]
  18. Wagner F. Methanol: a fermentation substrate. Experientia. 1977 Jan 15;33(1):110–113. doi: 10.1007/BF01936782. [DOI] [PubMed] [Google Scholar]
  19. van Dijken J. P., Oostra-Demkes G. J., Otto R., Harder W. S-formylgluthathione: the substrate for formate dehydrogenase in methanol-utilizing yeasts. Arch Microbiol. 1976 Dec 1;111(1-2):77–83. doi: 10.1007/BF00446552. [DOI] [PubMed] [Google Scholar]
  20. van Dijken J. P., Otto R., Harder W. Oxidation of methanol, formaldehyde and formate by catalase purified from methanol-grown Hansenula polymorpha. Arch Microbiol. 1975 Dec 31;106(3):221–226. doi: 10.1007/BF00446527. [DOI] [PubMed] [Google Scholar]
  21. van Dijken J. P., Veenhuis M., Vermeulen C. A., Harder W. Cytochemical localization of catalase activity in methanol-grown Hansenula polymorpha. Arch Microbiol. 1975 Nov 7;105(3):261–267. doi: 10.1007/BF00447145. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES