Abstract
Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balderston W. L., Sieburth J. M. Nitrate removal in closed-system aquaculture by columnar denitrification. Appl Environ Microbiol. 1976 Dec;32(6):808–818. doi: 10.1128/aem.32.6.808-818.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panganiban A. T., Jr, Patt T. E., Hart W., Hanson R. S. Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol. 1979 Feb;37(2):303–309. doi: 10.1128/aem.37.2.303-309.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postgate J. R. Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J Gen Microbiol. 1969 Aug;57(3):293–302. doi: 10.1099/00221287-57-3-293. [DOI] [PubMed] [Google Scholar]
- Powell M. R., Doebbler G. F., Hamilton R. W., Jr Serum enzyme level changes in pigs following decompression trauma. Aerosp Med. 1974 May;45(5):519–524. [PubMed] [Google Scholar]
- Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
- Zehnder A. J., Brock T. D. Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol. 1980 Jan;39(1):194–204. doi: 10.1128/aem.39.1.194-204.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zehnder A. J., Brock T. D. Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol. 1979 Jan;137(1):420–432. doi: 10.1128/jb.137.1.420-432.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]