Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1981 Sep;42(3):502–505. doi: 10.1128/aem.42.3.502-505.1981

Effects of Nickel, Cobalt, and Molybdenum on Performance of Methanogenic Fixed-Film Reactors

William D Murray 1, L van den Berg 1
PMCID: PMC244044  PMID: 16345846

Abstract

The conversion of acetic acid to methane and carbon dioxide by a mixed methanogenic population from an anaerobic fixed-film digestor was stimulated by the addition of nickel (100 nM) and cobalt (50 nM) and especially by the addition of these elements in combination. Molybdenum addition (50 nM) was only slightly stimulatory when added in combination with both nickel and cobalt. The addition of these trace metals to anaerobic fixed-film digestors, which treat food processing waste, greatly enhanced reactor performance. Total gas and methane productions were increased 42%, greater volumes of waste could be effectively treated, and reactor residence time was shortened. However, the lag period for reactor start-up was not reduced. Tests showed that reactor performance was increased because trace nutrient addition allowed accumulation of a thicker methanogenic fixed film.

Full text

PDF
502

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dixon N. E., Gazzola C., Blakeley R. L., Zerner B. Metal ions in enzymes using ammonia or amides. Science. 1976 Mar 19;191(4232):1144–1150. doi: 10.1126/science.769157. [DOI] [PubMed] [Google Scholar]
  2. Dixon N. E., Gazzola C., Watters J. J., Blakely R. L., Zerner B. Inhibition of Jack Bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. An equivalent weight for urease. J Am Chem Soc. 1975 Jul 9;97(14):4130–4131. doi: 10.1021/ja00847a044. [DOI] [PubMed] [Google Scholar]
  3. Hattori T., Hattori R. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microoganisms. CRC Crit Rev Microbiol. 1976 May;4(4):423–461. doi: 10.3109/10408417609102305. [DOI] [PubMed] [Google Scholar]
  4. Hoban D. J., van den Berg L. Effect of iron on conversion of acetic acid to methane during methanogenic fermentations. J Appl Bacteriol. 1979 Aug;47(1):153–159. doi: 10.1111/j.1365-2672.1979.tb01179.x. [DOI] [PubMed] [Google Scholar]
  5. Khan A. W., Trottier T. M. Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge. Appl Environ Microbiol. 1978 Jun;35(6):1027–1034. doi: 10.1128/aem.35.6.1027-1034.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mah R. A., Smith M. R., Baresi L. Studies on an acetate-fermenting strain of Methanosarcina. Appl Environ Microbiol. 1978 Jun;35(6):1174–1184. doi: 10.1128/aem.35.6.1174-1184.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nielsen F. H., Ollerich D. A. Proceedings: Nickel: a new essential trace element. Fed Proc. 1974 Jun;33(6):1767–1772. [PubMed] [Google Scholar]
  8. Northrop D. B., Wood H. G. Transcarboxylase. V. The presence of bound zinc and cobalt. J Biol Chem. 1969 Nov 10;244(21):5801–5807. [PubMed] [Google Scholar]
  9. Polacco J. C. Nitrogen Metabolism in Soybean Tissue Culture: II. Urea Utilization and Urease Synthesis Require Ni. Plant Physiol. 1977 May;59(5):827–830. doi: 10.1104/pp.59.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Repaske R., Repaske A. C. Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl Environ Microbiol. 1976 Oct;32(4):585–591. doi: 10.1128/aem.32.4.585-591.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schönheit P., Moll J., Thauer R. K. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol. 1979 Oct;123(1):105–107. doi: 10.1007/BF00403508. [DOI] [PubMed] [Google Scholar]
  12. Smith P. H., Mah R. A. Kinetics of acetate metabolism during sludge digestion. Appl Microbiol. 1966 May;14(3):368–371. doi: 10.1128/am.14.3.368-371.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Taylor G. T., Pirt S. J. Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch Microbiol. 1977 May 13;113(1-2):17–22. doi: 10.1007/BF00428574. [DOI] [PubMed] [Google Scholar]
  14. Whitman W. B., Wolfe R. S. Presence of nickel in factor F430 from Methanobacterium bryantii. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1196–1201. doi: 10.1016/0006-291x(80)90413-1. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES