Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1981 Nov;42(5):811–816. doi: 10.1128/aem.42.5.811-816.1981

Synthesis of 1,2-Epoxyoctane by Pseudomonas oleovorans During Growth in a Two-Phase System Containing High Concentrations of 1-Octene

Marie-José de Smet 1, Hans Wynberg 2, Bernard Witholt 1
PMCID: PMC244112  PMID: 16345883

Abstract

We have optimized and compared the synthesis of 1,2-epoxyoctane from 1-octene by resting and by growing cells of Pseudomonas oleovorans. The net production of 1,2-epoxyoctane by resting cells never exceeded 0.6 mg/ml of suspension. In contrast, P. oleovorans produced much more epoxide when it was grown on high levels of 1-octene. To raise the total production of epoxide, the octene layer was repeatedly transferred to fresh, growing cultures of P. oleovorans. By using this approach, a maximum of 28 mg of epoxide was synthesized per ml of total culture, resulting in the accumulation of ca. 75 mg of epoxide per ml in the octene phase.

Full text

PDF
811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. J., Gledhill W. E. The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms. Adv Appl Microbiol. 1971;14:249–388. doi: 10.1016/s0065-2164(08)70546-x. [DOI] [PubMed] [Google Scholar]
  2. Abbott B. J., Hou C. T. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans. Appl Microbiol. 1973 Jul;26(1):86–91. doi: 10.1128/am.26.1.86-91.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAPTIST J. N., GHOLSON R. K., COON M. J. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta. 1963 Jan 1;69:40–47. doi: 10.1016/0006-3002(63)91223-x. [DOI] [PubMed] [Google Scholar]
  4. Benson A., Tomoda K., Chang J., Matsueda G., Lode E. T., Coon M. J., Yasunobu K. T. Evolutionary and phylogenetic relationships of rubredoxin-containing microbes. Biochem Biophys Res Commun. 1971 Feb 19;42(4):640–646. doi: 10.1016/0006-291x(71)90536-5. [DOI] [PubMed] [Google Scholar]
  5. Benson S., Oppici M., Shapiro J., Fennewald M. Regulation of membrane peptides by the Pseudomonas plasmid alk regulon. J Bacteriol. 1979 Dec;140(3):754–762. doi: 10.1128/jb.140.3.754-762.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer R. F., Lode E. T., Coon M. J. Reduction of alkyl hydroperoxides to alcohols: role of rubredoxin, an electron carrier in the bacterial hydroxylation of hydrocarbons. Biochem Biophys Res Commun. 1971 Aug 20;44(4):925–930. doi: 10.1016/0006-291x(71)90800-x. [DOI] [PubMed] [Google Scholar]
  7. Buchanan J. F., Fulco A. J. Formation of 9,10-epoxypalmitate and 9,10-dihydroxypalmitate from palmitoleic acid by a soluble system from Bacillus megaterium. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1254–1260. doi: 10.1016/0006-291x(78)91138-5. [DOI] [PubMed] [Google Scholar]
  8. Chakrabarty A. M., Chou G., Gunsalus I. C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1137–1140. doi: 10.1073/pnas.70.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Enzymatic -oxidation. VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase. J Biol Chem. 1972 Apr 10;247(7):2109–2116. [PubMed] [Google Scholar]
  10. Jones J. B. On the potential of soluble and immobilized enzymes in synthetic organic chemistry. Methods Enzymol. 1976;44:831–844. doi: 10.1016/s0076-6879(76)44060-0. [DOI] [PubMed] [Google Scholar]
  11. Lode E. T., Coon M. J. Enzymatic omega-oxidation. V. Forms of Pseudomonas oleovorans rubredoxin containing one or two iron atoms: structure and function in omega-hydroxylation. J Biol Chem. 1971 Feb 10;246(3):791–802. [PubMed] [Google Scholar]
  12. May S. W., Abbott B. J. Enzymatic epoxidation. I. Alkene epoxidation by the -hydroxylation system of Pseudomonas oleovorans. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1230–1234. doi: 10.1016/0006-291x(72)90842-x. [DOI] [PubMed] [Google Scholar]
  13. May S. W., Abbott B. J. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans. J Biol Chem. 1973 Mar 10;248(5):1725–1730. [PubMed] [Google Scholar]
  14. May S. W., Abbott B. J., Felix A. On the role of superoxide in reactions catalyzed by rubredoxin of Pseudomonas oleovorans. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1540–1545. doi: 10.1016/0006-291x(73)91161-3. [DOI] [PubMed] [Google Scholar]
  15. May S. W., Schwartz R. D., Abbott B. J., Zaborsky O. R. Structural effects on the reactivity of substrates and inhibitors in the epoxidation system of Pseudomonas oleovorans. Biochim Biophys Acta. 1975 Sep 22;403(1):245–255. doi: 10.1016/0005-2744(75)90026-1. [DOI] [PubMed] [Google Scholar]
  16. May S. W., Schwartz R. D. Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans. J Am Chem Soc. 1974 Jun 12;96(12):4031–4032. doi: 10.1021/ja00819a060. [DOI] [PubMed] [Google Scholar]
  17. May S. W., Steltenkamp M. A., Schwartz R. D., McCoy C. J. Stereoselective formation of diepoxides by an enzyme system of Pseudomonas oleovorans. J Am Chem Soc. 1976 Nov 24;98(24):7856–7858. doi: 10.1021/ja00440a084. [DOI] [PubMed] [Google Scholar]
  18. May W., Kuo J. Y. Preparation and properties of immobilized rubredoxin. J Biol Chem. 1977 Apr 10;252(7):2390–2395. [PubMed] [Google Scholar]
  19. McKenna E. J., Coon M. J. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J Biol Chem. 1970 Aug 10;245(15):3882–3889. [PubMed] [Google Scholar]
  20. Peterson J. A., Basu D., Coon M. J. Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation. J Biol Chem. 1966 Nov 10;241(21):5162–5164. [PubMed] [Google Scholar]
  21. Peterson J. A., Coon M. J. Enzymatic omega-oxidation. 3. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans. J Biol Chem. 1968 Jan 25;243(2):329–334. [PubMed] [Google Scholar]
  22. Peterson J. A., Kusunose M., Kusunose E., Coon M. J. Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation. J Biol Chem. 1967 Oct 10;242(19):4334–4340. [PubMed] [Google Scholar]
  23. Ruettinger R. T., Olson S. T., Boyer R. F., Coon M. J. Identification of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1011–1017. doi: 10.1016/0006-291x(74)90797-9. [DOI] [PubMed] [Google Scholar]
  24. SIH C. J. Microbiological epoxidation of steroids. J Bacteriol. 1962 Aug;84:382–382. doi: 10.1128/jb.84.2.382-382.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwartz R. D., McCoy C. J. Enzymatic epoxidation: synthesis of 7,8-epoxy-1-octene, 1,2-7,8-diepoxyoctane, and 1,2-Epoxyoctane by Pseudomonas oleovorans. Appl Environ Microbiol. 1976 Jan;31(1):78–82. doi: 10.1128/aem.31.1.78-82.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwartz R. D., McCoy C. J. Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane. Appl Environ Microbiol. 1977 Jul;34(1):47–49. doi: 10.1128/aem.34.1.47-49.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schwartz R. D., McCoy C. J. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements. Appl Microbiol. 1973 Aug;26(2):217–218. doi: 10.1128/am.26.2.217-218.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schwartz R. D. Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans. Appl Microbiol. 1973 Apr;25(4):574–577. doi: 10.1128/am.25.4.574-577.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ueda T., Coon M. J. Enzymatic oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in hydroxylation. J Biol Chem. 1972 Aug 25;247(16):5010–5016. [PubMed] [Google Scholar]
  30. VAN DER LINDEN A. C. EPOXIDATION OF ALPHA-OLEFINS BY HEPTANE-GROWN PSEUDOMONAS CELLS. Biochim Biophys Acta. 1963 Sep 3;77:157–159. doi: 10.1016/0006-3002(63)90484-0. [DOI] [PubMed] [Google Scholar]
  31. Witholt B. Method for isolating mutants overproducing nicotinamide adenine dinucleotide and its precursors. J Bacteriol. 1972 Jan;109(1):350–364. doi: 10.1128/jb.109.1.350-364.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES