Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1981 Dec;42(6):1057–1061. doi: 10.1128/aem.42.6.1057-1061.1981

Immunodiffusion method for detection of type A Clostridium botulinum.

J L Ferreira, M K Hamdy, F A Zapatka, W O Hebert
PMCID: PMC244154  PMID: 6797350

Abstract

A simple gel immunodiffusion agar procedure was developed for detecting toxigenic strains of Clostridium botulinum type A. The method consisted of overlaying colonies grown on thin-layer tryptone-peptone-glucose-yeast extract agar with gel diffusion agar containing desired levels of C. botulinum type A antitoxin. Concentric precipitin zones formed around colonies of C. botulinum type A. Strains of C. botulinum type A were detected by this procedure. However, C. botulinum type B reacted to a lesser degree with this system. No reaction was noted with types E, F, Langeland, F8G, Clostridium perfringens, or with strains of nontoxigenic Clostridium sporogenes. Thickness of the plating medium, incubation time and temperature, environmental growth conditions, and levels of both agar an antitoxin were important factors affecting the efficiency of the procedure, whereas the age of the culture (used as inoculum) was not critical. Thin agar medium (5 ml per plate [15 by 100 mm]) containing 1.5% agar gave consistent results, but more agar limited diffusion, and lower levels encouraged spreaders. The optimal concentration of antitoxin incorporated in to the gel diffusion agar overlay was 1.2 IU/ml gel diffusion agar. Rabbit type A antitoxin prepared with purer immunizing agent gave similar reactions. The addition of type A antitoxin in tryptone-peptone-glucose-yeast extract agar medium before inoculation with type A C. botulinum showed promising results.

Full text

PDF
1057

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon S. S., Midura T. F., Damus K., Wood R. M., Chin J. Intestinal infection and toxin production by Clostridium botulinum as one cause of sudden infant death syndrome. Lancet. 1978 Jun 17;1(8077):1273–1277. doi: 10.1016/s0140-6736(78)91264-3. [DOI] [PubMed] [Google Scholar]
  2. BOROFF D. A. Study of toxins of Clostridium botulinum. III. Relation of autolysis to toxin production. J Bacteriol. 1955 Oct;70(4):363–367. doi: 10.1128/jb.70.4.363-367.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boroff D. A., Chu-Chen G. Radioimmunoassay for type A toxin of Clostridium botulinum. Appl Microbiol. 1973 Apr;25(4):545–549. doi: 10.1128/am.25.4.545-549.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciccarelli A. S., Whaley D. N., McCroskey L. M., Gimenez D. F., Dowell V. R., Jr, Hatheway C. L. Cultural and physiological characteristics of Clostridium botulinum type G and the susceptibility of certain animals to its toxin. Appl Environ Microbiol. 1977 Dec;34(6):843–848. doi: 10.1128/aem.34.6.843-848.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DasGupta B. R., Sugiyama H. A common subunit structure in Clostridium botulinum type A, B and E toxins. Biochem Biophys Res Commun. 1972 Jul 11;48(1):108–112. doi: 10.1016/0006-291x(72)90350-6. [DOI] [PubMed] [Google Scholar]
  6. Hayes S. Use of ganglioside affinity filters to identify toxigenic strains of Clostridium botulinum types C and D. Infect Immun. 1979 Oct;26(1):150–156. doi: 10.1128/iai.26.1.150-156.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson H. M., Brenner K., Angelotti R., Hall H. E. Serological studies of types A, B, and E botulinal toxins by passive hemagglutination and bentonite flocculation. J Bacteriol. 1966 Mar;91(3):967–974. doi: 10.1128/jb.91.3.967-974.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kautter D. A., Solomon H. M. Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods. J Assoc Off Anal Chem. 1977 May;60(3):541–545. [PubMed] [Google Scholar]
  9. Miller C. A., Anderson A. W. Rapid detection and quantitative estimation of type A botulinum toxin by electroimmunodiffusion. Infect Immun. 1971 Aug;4(2):126–129. doi: 10.1128/iai.4.2.126-129.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miner N. A., Koehler J., Greenaway L. Intraperitoneal injection of mice. Appl Microbiol. 1969 Feb;17(2):250–251. doi: 10.1128/am.17.2.250-251.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Notermans S., Dufrenne J., Schothorst M. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum toxin type A. Jpn J Med Sci Biol. 1978 Feb;31(1):81–85. doi: 10.7883/yoken1952.31.81. [DOI] [PubMed] [Google Scholar]
  12. Sakaguchi G., Sakaguchi S., Kozaki S., Sugii S., Oishi I. Cross reaction in reversed passive hemagglutination between Clostridium botulinum type A and B toxins and its avoidance by the sue of anti-toxic component immunoglobulin isolated by affinity chromatography. Jpn J Med Sci Biol. 1974 Jun;27(3):161–172. doi: 10.7883/yoken1952.27.161. [DOI] [PubMed] [Google Scholar]
  13. Siegel L. S., Metzger J. F. Toxin production by Clostridium botulinum type A under various fermentation conditions. Appl Environ Microbiol. 1979 Oct;38(4):606–611. doi: 10.1128/aem.38.4.606-611.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sugiyama H. Clostridium botulinum neurotoxin. Microbiol Rev. 1980 Sep;44(3):419–448. doi: 10.1128/mr.44.3.419-448.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vermilyea B. L., Walker H. W., Ayres J. C. Detection of botulinal toxins by immunodiffusion. Appl Microbiol. 1968 Jan;16(1):21–24. doi: 10.1128/am.16.1.21-24.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES