Skip to main content
American Journal of Alzheimer's Disease and Other Dementias logoLink to American Journal of Alzheimer's Disease and Other Dementias
. 2007 Dec;22(6):474–488. doi: 10.1177/1533317507308779

Distinct MRI Atrophy Patterns in Autopsy-Proven Alzheimer's Disease and Frontotemporal Lobar Degeneration

GD Rabinovici 1, WW Seeley 2, EJ Kim 3, ML Gorno-Tempini 4, K Rascovsky 5, TA Pagliaro 6, SC Allison 7, C Halabi 8, JH Kramer 9, JK Johnson 10, MW Weiner 11, MS Forman 12, JQ Trojanowski 13, SJ DeArmond 14, BL Miller 15, HJ Rosen 16
PMCID: PMC2443731  NIHMSID: NIHMS48396  PMID: 18166607

Abstract

To better define the anatomic distinctions between Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD), we retrospectively applied voxel-based morphometry to the earliest magnetic resonance imaging scans of autopsy-proven AD (N = 11), FTLD (N = 18), and controls (N = 40). Compared with controls, AD patients showed gray matter reductions in posterior temporoparietal and occipital cortex; FTLD patients showed atrophy in medial prefrontal and medial temporal cortex, insula, hippocampus, and amygdala; and patients with both disorders showed atrophy in dorsolateral and orbital prefrontal cortex and lateral temporal cortex (P FWE-corr < .05). Compared with FTLD, AD patients had decreased gray matter in posterior parietal and occipital cortex, whereas FTLD patients had selective atrophy in anterior cingulate, frontal insula, subcallosal gyrus, and striatum (P < .001, uncorrected). These findings suggest that AD and FTLD are anatomically distinct, with degeneration of a posterior parietal network in AD and degeneration of a paralimbic fronto-insular-striatal network in FTLD.

Keywords: Alzheimer's disease, frontotemporal lobar degeneration, autopsy, magnetic resonance imaging, voxel-based morphometry

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Contributor Information

G.D. Rabinovici, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California, grabinovici@memory.ucsf.edu .

W.W. Seeley, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

E.J. Kim, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

M.L. Gorno-Tempini, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

K. Rascovsky, Memory and Aging Center, University of California, San Francisco, California.

T.A. Pagliaro, Memory and Aging Center, University of California, San Francisco, California.

S.C. Allison, Memory and Aging Center, University of California, San Francisco, California.

C. Halabi, Memory and Aging Center, University of California, San Francisco, California.

J.H. Kramer, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

J.K. Johnson, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

M.W. Weiner, Department of Radiology, University of California, San Francisoc, California, Magnetic Resonance Imaging Unit San Francisco Veterans Affairs Hospital, San Francisco, California.

M.S. Forman, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, Institute on Aging Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

J.Q. Trojanowski, Institute on Aging Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.

S.J. DeArmond, Department of Pathology University of California, San Francisco, California.

B.L. Miller, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

H.J. Rosen, Memory and Aging Center, University of California, San Francisco, California, Departments of Neurology, University of California, San Francisco, California.

References

  1. Barker WW, Luis CA, Kashuba A., et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord. 2002. ;16:203-212. [DOI] [PubMed] [Google Scholar]
  2. Ratnavalli E. , Brayne C., Dawson K., Hodges JR The prevalence of frontotemporal dementia . Neurology. 2002;58: 1615-1621. [DOI] [PubMed] [Google Scholar]
  3. Neary D., Snowden JS, Gustafson L., et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546-1554. [DOI] [PubMed] [Google Scholar]
  4. Lomen-Hoerth C., Anderson T., Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002. ;59:1077-1079. [DOI] [PubMed] [Google Scholar]
  5. McKhann GM, Albert MS, Grossman M., Miller B., Dickson D., Trojanowski JQ Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol. 2001;58:1803-1809. [DOI] [PubMed] [Google Scholar]
  6. Forman MS, Farmer J., Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59:952-962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kertesz A., McMonagle P., Blair M., Davidson W., Munoz DG The evolution and pathology of frontotemporal dementia. Brain . 2005;128:1996-2005. [DOI] [PubMed] [Google Scholar]
  8. Knibb JA, Xuereb JH, Patterson K., Hodges JR Clinical and pathological characterization of progressive aphasia. Ann Neurol. 2006;59:156-165. [DOI] [PubMed] [Google Scholar]
  9. Rosen HJ, Gorno-Tempini ML, Goldman WP, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology. 2002;58:198-208. [DOI] [PubMed] [Google Scholar]
  10. Ishii K., Kawachi T., Sasaki H., et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of z score images. AJNR Am J Neuroradiol. 2005;26:333-340. [PMC free article] [PubMed] [Google Scholar]
  11. Baron JC, Chetelat G., Desgranges B., et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage. 2001. ;14:298-309. [DOI] [PubMed] [Google Scholar]
  12. Frisoni GB, Testa C., Zorzan A., et al. Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry. J Neurol Neurosurg Psychiatry. 2002;73:657-664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Boxer AL, Rankin KP, Miller BL, et al. Cinguloparietal atrophy distinguishes Alzheimer disease from semantic dementia. Arch Neurol. 2003;60:949-956. [DOI] [PubMed] [Google Scholar]
  14. Karas GB, Burton EJ, Rombouts SA, et al. A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage . 2003;18:895-907. [DOI] [PubMed] [Google Scholar]
  15. Whitwell JL , Josephs KA, Rossor MN, et al. Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. Arch Neurol. 2005;62:1402-1408. [DOI] [PubMed] [Google Scholar]
  16. Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55:335-346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Busatto GF, Garrido GE, Almeida OP, et al. A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease. Neurobiol Aging. 2003;24:221-231. [DOI] [PubMed] [Google Scholar]
  18. Kawachi T., Ishii K., Sakamoto S., et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer's disease. Eur J Nucl Med Mol Imaging . 2006;33:801-809. [DOI] [PubMed] [Google Scholar]
  19. Du AT, Schuff N., Kramer JH, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain. 2007;130:1159-1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Singh V., Chertkow H., Lerch JP, Evans AC, Dorr AE, Kabani NJ Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain. 2006;129:2885-2893. [DOI] [PubMed] [Google Scholar]
  21. Grossman M. , McMillan C., Moore P., et al. What's in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain. 2004;127:628-649. [DOI] [PubMed] [Google Scholar]
  22. Barnes J., Whitwell JL, Frost C., Josephs KA, Rossor M., Fox NC Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol. 2006; 63:1434-1439. [DOI] [PubMed] [Google Scholar]
  23. Galton CJ, Gomez-Anson B., Antoun N., et al. Temporal lobe rating scale: application to Alzheimer's disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry . 2001;70:165-173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Chan D., Fox NC, Scahill RI, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol. 2001;49:433-442. [PubMed] [Google Scholar]
  25. Whitwell JL , Jack CR Jr, Baker M., et al. Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations. Arch Neurol. 2007;64:371-376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Likeman M., Anderson VM, Stevens JM, et al. Visual assessment of atrophy on magnetic resonance imaging in the diagnosis of pathologically confirmed young-onset dementias. Arch Neurol. 2005;62:1410-1415. [DOI] [PubMed] [Google Scholar]
  27. Boccardi M. , Pennanen C., Laakso MP, et al. Amygdaloid atrophy in frontotemporal dementia and Alzheimer's disease. Neurosci Lett. 2002;335:139-143. [DOI] [PubMed] [Google Scholar]
  28. Galton CJ, Patterson K., Graham K., et al. Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology. 2001;56:216-225. [DOI] [PubMed] [Google Scholar]
  29. Whitwell JL , Sampson EL, Watt HC, Harvey RJ, Rossor MN, Fox NC A volumetric magnetic resonance imaging study of the amygdala in frontotemporal lobar degeneration and Alzheimer's disease . Dement Geriatr Cogn Disord. 2005;20:238-244. [DOI] [PubMed] [Google Scholar]
  30. Barnes J., Godbolt AK, Frost C., et al. Atrophy rates of the cingulate gyrus and hippocampus in AD and FTLD. Neurobiol Aging. 2007;28:20-28. [DOI] [PubMed] [Google Scholar]
  31. Bocti C., Rockel C., Roy P., Gao F., Black SE Topographical patterns of lobar atrophy in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord. 2006;21: 364-372. [DOI] [PubMed] [Google Scholar]
  32. Boccardi M. , Laakso MP, Bresciani L., et al. The MRI pattern of frontal and temporal brain atrophy in frontotemporal dementia. Neurobiol Aging . 2003;24:95-103. [DOI] [PubMed] [Google Scholar]
  33. Ashburner J. , Friston KJ Voxel-based morphometry—the methods . Neuroimage. 2000;11:805-821. [DOI] [PubMed] [Google Scholar]
  34. Kim EJ, Rabinovici GD, Seeley WW, et al. Patterns of MRI atrophy in tau-positive and ubiquitin-positive frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry . In press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Devinsky O., Morrell MJ, Vogt BA Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(pt 1):279-306. [DOI] [PubMed] [Google Scholar]
  36. Rolls ET, Hornak J., Wade D., McGrath J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry. 1994;57:1518-1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Seeley WW, Menon V., Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349-2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Boccardi M. , Sabattoli F., Laakso MP, et al. Frontotemporal dementia as a neural system disease. Neurobiol Aging. 2005;26:37-44. [DOI] [PubMed] [Google Scholar]
  39. Bozeat S., Gregory CA, Ralph MA, Hodges JR Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J Neurol Neurosurg Psychiatry. 2000;69:178-186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Bathgate D. , Snowden JS, Varma A., Blackshaw A., Neary D. Behaviour in frontotemporal dementia, Alzheimer's disease and vascular dementia. Acta Neurol Scand. 2001;103: 367-378. [DOI] [PubMed] [Google Scholar]
  41. Snowden JS, Bathgate D., Varma A., Blackshaw A., Gibbons ZC, Neary D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia . J Neurol Neurosurg Psychiatry. 2001;70:323-332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Minoshima S. , Giordani B., Berent S., Frey KA, Foster NL, Kuhl DE Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997; 42:85-94. [DOI] [PubMed] [Google Scholar]
  43. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A. 2002;99:4703-4707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Elfgren C., Brun A., Gustafson L., et al. Neuropsychological tests as discriminators between dementia of Alzheimer type and frontotemporal dementia. Int J Geriatr Psychiatry. 1994; 9:635-642. [Google Scholar]
  45. Rascovsky K. , Salmon DP, Ho GJ, et al. Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology. 2002;58:1801-1808. [DOI] [PubMed] [Google Scholar]
  46. Kramer JH, Jurik J., Sha SJ, et al. Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cogn Behav Neurol. 2003;16:211-218. [DOI] [PubMed] [Google Scholar]
  47. Consensus Recommendations for the Postmortem Diagnosis of Alzheimer's Disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. Neurobiol Aging. 1997;18:S1-S2. [PubMed] [Google Scholar]
  48. Josephs KA, Whitwell JL, Dickson DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD [published online ahead of print]. Neurobiol Aging. 2006. ; November 9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Boxer AL, Geschwind MD, Belfor N., et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63:81-86. [DOI] [PubMed] [Google Scholar]
  50. McKeith IG, Dickson DW, Lowe J., et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005. ;65:1863-1872. [DOI] [PubMed] [Google Scholar]
  51. Morris JC The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43: 2412-2414. [DOI] [PubMed] [Google Scholar]
  52. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan EM Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34:939-944. [DOI] [PubMed] [Google Scholar]
  53. McKeith IG, Galasko D., Kosaka K., et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. Neurology. 1996;47:1113-1124. [DOI] [PubMed] [Google Scholar]
  54. Folstein MF , Folstein SE, McHugh PR “Mini-mental state.” A practical method for grading the mental state of patients for the clinician. J Psychiat Res. 1975; 12:189-198. [DOI] [PubMed] [Google Scholar]
  55. Rosen HJ, Allison SC, Schauer GF, Gorno-Tempini ML, Weiner MW, Miller BL Neuroanatomical correlates of behavioural disorders in dementia. Brain. 2005;128: 2612-2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Good CD, Johnsrude I., Ashburner J., Henson RN, Friston KJ, Frackowiak RS Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 2001;14:685-700. [DOI] [PubMed] [Google Scholar]
  57. Good CD, Johnsrude IS, Ashburner J., Henson RN, Friston KJ, Frackowiak RS A voxel-based morphometric study of ageing in 465 normal adult human brains . Neuroimage. 2001;14:21-36. [DOI] [PubMed] [Google Scholar]
  58. Testa C., Laakso MP, Sabattoli F., et al. A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease. J Magn Reson Imaging. 2004;19:274-282. [DOI] [PubMed] [Google Scholar]
  59. Senjem ML, Gunter JL, Shiung MM, Petersen RC, Jack CR Jr. Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. Neuroimage. 2005;26:600-608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Nichols T., Brett M., Andersson J., Wager T., Poline JB Valid conjunction inference with the minimum statistic. Neuroimage . 2005;25:653-660. [DOI] [PubMed] [Google Scholar]
  61. Neumann M., Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006. ; 314:130-133. [DOI] [PubMed] [Google Scholar]
  62. Mummery C., Patterson K., Price C., Ashburner J., Frackowiak R., Hodges J. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann Neurol. 2000;47:36-45. [PubMed] [Google Scholar]
  63. Frisoni GB, Beltramello A., Geroldi C., Weiss C., Bianchetti A., Trabucchi M. Brain atrophy in frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1996;61:157-165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Fukui T., Kertesz A. Volumetric study of lobar atrophy in Pick complex and Alzheimer's disease . J Neurol Sci. 2000;174:111-121. [DOI] [PubMed] [Google Scholar]
  65. Najlerahim A. , Bowen DM Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol (Berl). 1988;75:509-512. [DOI] [PubMed] [Google Scholar]
  66. Broe M., Hodges JR, Schofield E., Shepherd CE, Kril JJ, Halliday GM Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology. 2003;60:1005-1011. [DOI] [PubMed] [Google Scholar]
  67. Brun A., Gustafson L. Limbic lobe involvement in presenile dementia. Arch Psychiatr Nervenkr. 1978;226:79-93. [DOI] [PubMed] [Google Scholar]
  68. Mesulam MM From sensation to cognition. Brain. 1998;121(pt 6):1013-1052. [DOI] [PubMed] [Google Scholar]
  69. Ongur D., Price JL The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206-219. [DOI] [PubMed] [Google Scholar]
  70. Damasio H., Grabowski T., Frank R., Galaburda AM, Damasio AR The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science. 1994;264:1102-1105. [DOI] [PubMed] [Google Scholar]
  71. Rolls ET The functions of the orbitofrontal cortex. Brain Cogn. 2004;55:11-29. [DOI] [PubMed] [Google Scholar]
  72. Critchley HD Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005. ; 493:154-166. [DOI] [PubMed] [Google Scholar]
  73. Augustine JR Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996;22:229-244. [DOI] [PubMed] [Google Scholar]
  74. Scherder EJ , Sergeant JA, Swaab DF Pain processing in dementia and its relation to neuropathology. Lancet Neurol. 2003;2:677-686. [DOI] [PubMed] [Google Scholar]
  75. Rahman S., Robbins TW, Sahakian BJ Comparative cognitive neuropsychological studies of frontal lobe function: implications for therapeutic strategies in frontal variant frontotemporal dementia. Dement Geriatr Cogn Disord. 1999. ;10(suppl 1):15-28. [DOI] [PubMed] [Google Scholar]
  76. Gregory C., Lough S., Stone V., et al. Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer's disease: theoretical and practical implications. Brain. 2002;125:752-764. [DOI] [PubMed] [Google Scholar]
  77. Nimchinsky EA, Gilissen E., Allman JM, Perl DP, Erwin JM, Hof PR A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci U S A. 1999; 96:5268-5273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. von Economo C. Eine neue Art Spezialzellen des Lobus cinguli und Lobus insulae. Z Ges Neurol Psychiatr. 1926;100:706-712. [Google Scholar]
  79. Seeley WW, Carlin DA, Allman JM, et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol. 2006;60:660-667. [DOI] [PubMed] [Google Scholar]
  80. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25: 7709-7717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. New Engl J Med. 1996;334:752-758. [DOI] [PubMed] [Google Scholar]
  82. Shannon BJ, Buckner RL Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex . J Neurosci. 2004;24:10084-10092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Kobayashi Y. , Amaral DG Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol. 2003; 466:48-79. [DOI] [PubMed] [Google Scholar]
  84. Greicius MD , Srivastava G., Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:4637-4642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Frisoni GB, Pievani M., Testa C., et al. The topography of grey matter involvement in early and late onset Alzheimer's disease. Brain. 2007;130:720-730. [DOI] [PubMed] [Google Scholar]
  86. Whitwell JL , Jack CR Jr, Kantarci K., et al. Imaging correlates of posterior cortical atrophy. Neurobiol Aging. 2007;28:1051-1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Arnold SE, Hyman BT, Flory J., Damasio AR, Van Hoesen GW The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients in Alzheimer's disease . Cereb Cortex. 1991;1:103-116. [DOI] [PubMed] [Google Scholar]
  88. Edison P., Archer HA, Hinz R., et al. Amyloid, hypometabolism, and cognition in Alzheimer disease. An [11C]PIB and [18F]FDG PET study. Neurology. 2007;68:501-508. [DOI] [PubMed] [Google Scholar]
  89. Busatto GF, Garrido GE, Almeida OP, et al. A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease. Neurobiol Aging. 2003;24:221-231. [DOI] [PubMed] [Google Scholar]
  90. Suva D., Favre I., Kraftsik R., Esteban M., Lobrinus A., Miklossy J. Primary motor cortex involvement in Alzheimer disease. J Neuropathol Exp Neurol. 1999;58:1125-1134. [DOI] [PubMed] [Google Scholar]
  91. von Gunten A., Bouras C., Kovari E., Giannakopoulos P., Hof PR Neural substrates of cognitive and behavioral deficits in atypical Alzheimer's disease. Brain Res Rev. 2006;51:176-211. [DOI] [PubMed] [Google Scholar]
  92. Caviness JN Myoclonus and neurodegenerative disease— what's in a name? Parkinsonism Relat Disord. 2003;9: 185-192. [DOI] [PubMed] [Google Scholar]
  93. Bookstein FL “ Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage. 2001;14:1454-1462. [DOI] [PubMed] [Google Scholar]
  94. Whitwell JL, Jack CR Jr. Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging . 2005;16:409-425. [DOI] [PubMed] [Google Scholar]
  95. Rosen HJ, Allison SC, Ogar JM, et al. Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology. 2006;67:1752-1756. [DOI] [PubMed] [Google Scholar]
  96. Whitwell JL , Jack CR Jr, Senjem ML, Josephs KA Patterns of atrophy in pathologically confirmed FTLD with and without motor neuron degeneration. Neurology. 2006; 66:102-104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Alzheimer's Disease and Other Dementias are provided here courtesy of SAGE Publications

RESOURCES