Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2008 Apr 28;52(7):2647–2652. doi: 10.1128/AAC.01398-07

In Vitro Activity of Telavancin against Resistant Gram-Positive Bacteria

Kevin M Krause 1, Marika Renelli 1, Stacey Difuntorum 1, Terry X Wu 1, Dmitri V Debabov 1,, Bret M Benton 1,*
PMCID: PMC2443888  PMID: 18443122

Abstract

The in vitro activity of telavancin was tested against 743 predominantly antimicrobial-resistant, gram-positive isolates. Telavancin was highly active against methicillin-resistant staphylococci (MIC90, 0.5 to 1 μg/ml), streptococci (all MICs, ≤0.12 μg/ml), and VanB-type enterococci (all MICs, ≤2 μg/ml). Time-kill studies demonstrated the potent bactericidal activity of telavancin.


The pervasiveness of multidrug-resistant, gram-positive bacteria in the hospital setting and their increasing occurrence in the community present a significant challenge for the management of serious infections (1, 10, 11). The worldwide prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) poses a particular threat (2, 6, 10, 11).

Telavancin, an investigational, multivalent lipoglycopeptide active against gram-positive pathogens, has been evaluated in phase 3 clinical trials for the treatment of complicated skin and skin structure infections (cSSSI) and hospital-acquired pneumonia (G. R. Corey, M. E. Stryjewski, W. D. O'Riordan, V. G. Fowler, Jr., A. Hopkins, M. M. Kitt, and S. L. Barriere, presented at the 14th Annual Meeting of the Infectious Diseases Society of America, Torono, Canada, 12 to 15 October 2006; E. Rubinstein, G. R. Corey, M. E. Stryjewski, H. W. Boucher, R. N. Daly, F. C. Genter, S. L. Barriere, M. M. Kitt, and H. D. Friedland, presented at the 18th European Congress of Clinical Microbiology and Infectious Diseases, Barcelona, Spain, 19 to 22 April 2008).

Preliminary surveillance studies have documented the in vitro activity of telavancin against gram-positive pathogens, including MRSA and CoNS, with reduced susceptibility to glycopeptides and other resistant gram-positive species (5, 7-9, 13). In this report, we describe the results of broth microdilution susceptibility testing of telavancin and comparator agents against a diverse collection of multiresistant gram-positive bacteria including MRSA, MRCoNS, streptococci, including multidrug-resistant Streptococcus pneumoniae (MDRSP), and vancomycin-resistant enterococci (VRE). Time-kill kinetic studies were also performed with representative drug-resistant isolates to further profile the bactericidal activity of telavancin.

A total of 743 gram-positive clinical isolates collected globally between 1998 and 2006 were assembled for this study. Clinical isolates of MRSA (n = 98) were obtained from patients with cSSSI, bacteremia, endocarditis, osteomyelitis, or foreign body infections. Other clinical isolates included 91 MRCoNS, 131 S. pneumoniae isolates, 203 β-hemolytic streptococci, 8 viridans group streptococci, and 212 VRE. Five reference strains (including three quality control strains and two type strains used for time-kill studies) were also tested.

Telavancin was prepared by Theravance, Inc. (South San Francisco, CA). All other antibiotics for MIC testing were supplied independently by TREK Diagnostic Systems (Cleveland, OH). Comparator agents for time-kill studies included vancomycin (Sigma Chemical Co., St. Louis, MO) and linezolid (Zyvox; Pfizer). Susceptibility tests were performed by reference broth microdilution methodology as defined by the CLSI using frozen form panels prepared by TREK Diagnostic Systems (Cleveland, OH) (3). MICs for all streptococci were determined in panels supplemented with 2 to 5% lysed horse blood. Vancomycin and teicoplanin MIC results were used to define the resistance determinants of VRE. S. pneumoniae strains exhibiting concurrent resistance to at least three of the following agents were defined as MDRSP: cefuroxime, penicillin, tetracycline, erythromycin, or trimethoprim-sulfamethoxazole.

Time-kill experiments were performed according to CLSI (formerly NCCLS) defined methodology (12) for seven isolates: MRSA MED 2028 (osteomyelitis isolate), MRSA MED 1805 (bloodstream isolate), methicillin-resistant S. epidermidis (MRSE) ATCC 35984 (American Type Culture Collection, Manassas, VA), MDRSP MED 1090 (Massachusetts General Hospital, Boston, MA), Streptococcus agalactiae MED 2038 and Streptococcus pyogenes MED 2040 (both cSSSI isolates) (G. R. Corey et al., presented at the 14th Annual Meeting of the Infectious Diseases Society of America, Torono, Canada, 12 to 15 October 2006), and VanB-type vancomycin-resistant Enterococcus faecalis ATCC 51575 (American Type Culture Collection).

The MIC profiles of telavancin and comparator agents against all tested isolates are summarized in Table 1. Based upon MIC90 comparisons, telavancin was among the most-active agents tested against clinical strains of MRSA (MIC90 = 0.5 μg/ml); all isolates were inhibited by ≤1 μg/ml telavancin. Concurrent resistance to comparators had no effect on telavancin activity. Telavancin MICs for two daptomycin-nonsusceptible isolates (daptomycin MICs of 4 and 8 μg/ml) were 0.5 and 0.25 μg/ml. Based upon MIC90 comparisons, daptomycin and quinupristin-dalfopristin were as potent as telavancin, followed by teicoplanin, vancomycin, gentamicin, and linezolid. Trimethoprim-sulfamethoxazole was the most-active agent tested against these strains.

TABLE 1.

In vitro activity of telavancin against resistant staphylococci, streptococci, and enterococci

Organism (no. tested) and antibiotic MIC (μg/ml)g
% Susceptiblea
Range 50% 90%
S. aureus, methicillin resistant (98)
    Telavancin 0.06-1 0.25 0.5
    Vancomycin 0.25-2 0.5 1 100
    Teicoplanin 0.25-4 0.5 1 100
    Ciprofloxacin ≤0.06->8 8 16 32
    Daptomycin 0.12->1 0.25 0.5 98
    Linezolid 1-8 2 4 98
    Quinupristin-dalfopristin ≤0.12-0.5 0.25 0.5 99
    Gentamicin ≤0.06->16 0.5 2 97
    Erythromycin 0.5->16 >16 >16 2
    Telithromycin 0.06->8 0.25 16 83
    Trimethoprim-sulfamethoxazoleb ≤0.5-4 ≤0.5 ≤0.5 99
S. epidermidis, methicillin resistant (74)
    Telavancin 0.25-1 0.5 1
    Vancomycin 0.5-4 2 2 100
    Teicoplanin 0.25-16 8 16 81
    Ciprofloxacin ≤0.12->8 4 >8 28
    Daptomycin 0.25-1 0.5 1 100
    Linezolid ≤0.5-4 1 1 100
    Quinupristin-dalfopristin ≤0.12-4 0.25 2 93
    Gentamicin ≤0.06->16 16 >16 35
    Erythromycin ≤0.12->16 >16 >16 15
    Telithromycin 0.06->8 0.5 >8 43
    Trimethoprim-sulfamethoxazoleb ≤0.5->4 >4 >4 37
CoNS, methicillin resistant (17)c
    Telavancin 0.06-1 0.5 1
    Vancomycin 0.25-4 2 2 100
    Teicoplanin ≤0.12-32 4 32 88
    Ciprofloxacin ≤0.06->8 >8 >8 35
    Daptomycin 0.12-1 0.25 1 100
    Linezolid 0.5-2 1 2 100
    Quinupristin-dalfopristin ≤0.12-1 0.25 0.5 100
    Gentamicin ≤0.06->16 16 >16 29
    Erythromycin ≤0.12->16 >16 >16 18
    Telithromycin 0.12->8 >8 >8 29
    Trimethoprim-sulfamethoxazoleb ≤0.5->4 >4 >4 29
S. pneumoniae, penicillin intermediate (12)
    Telavancin 0.004-0.12 0.015 0.06
    Vancomycin ≤0.06-0.5 0.25 0.5 100
    Daptomycin 0.06-1 0.12 0.5
    Linezolid 0.5-2 1 1 100
    Penicillin 0.12-1 1 1 0
    Clindamycin 0.06->0.25 0.06 0.5 83
    Erythromycin 0.03->1 >1 >1 42
    Telithromycin 0.008-0.12 0.03 0.12 100
    Trimethoprim-sulfamethoxazoleb ≤0.06->4 2 4 8
    Cefuroxime 0.5->4 2 4 17
    Ceftriaxone 0.25-2 0.5 1 92
    Levofloxacin 0.25-8 0.5 1 92
    Tetracycline ≤0.06->8 0.12 >8 67
S. pneumoniae, penicillin resistant (59)
    Telavancin 0.008-0.12 0.015 0.03
    Vancomycin 0.12-1 0.25 0.25 100
    Daptomycin 0.06-0.5 0.12 0.12
    Linezolid 0.5-2 1 1 100
    Penicillin 2->2 2 >2 0
    Clindamycin ≤0.03->0.25 0.06 >0.25 76
    Erythromycin 0.03->1 >1 >1 20
    Telithromycin 0.004-0.5 0.06 0.5 100
    Trimethoprim-sulfamethoxazoleb ≤0.06->4 4 >4 3
    Cefuroxime 1->4 >4 >4 2
    Ceftriaxone 0.5->4 1 2 73
    Levofloxacin ≤0.12->8 0.5 1 97
    Tetracycline ≤0.06->8 >8 >8 41
MDRSP (60)d
    Telavancin 0.008-0.12 0.015 0.03
    Vancomycin 0.12-1 0.25 0.25 100
    Daptomycin 0.06-0.5 0.12 0.12
    Linezolid 0.5-2 1 1 100
    Penicillin 1->2 2 >2 0
    Clindamycin ≤0.03->0.25 0.06 >0.25 73
    Erythromycin 0.03->1 >1 >1 13
    Telithromycin 0.004-0.5 0.06 0.5 100
    Trimethoprim-sulfamethoxazoleb ≤0.06->4 4 >4 3
    Cefuroxime 1->4 >4 >4 2
    Ceftriaxone 0.5->4 1 2 77
    Levofloxacin ≤0.12->8 0.5 1 95
    Tetracycline ≤0.06->8 >8 >8 37
S. pyogenes, group A (122)
    Telavancin ≤0.001-0.12 0.03 0.06
    Vancomycin ≤0.06->1 0.25 0.5 98
    Daptomycin ≤0.03-1 ≤0.03 0.25 100
    Linezolid ≤0.012->2 1 1 98
    Penicillin ≤0.06->2 ≤0.06 ≤0.06 93
    Clindamycin ≤0.03->0.25 ≤0.03 0.06 98
    Erythromycin ≤0.015->1 0.03 >1 89
    Telithromycin 0.004-1 0.015 0.015
    Trimethoprim-sulfamethoxazoleb ≤0.06-4 ≤0.06 0.12
    Cefuroxime ≤0.12->4 ≤0.12 0.25
    Ceftriaxone ≤0.015->4 ≤0.015 0.12 92
    Levofloxacin ≤0.12->8 0.5 1 98
    Tetracycline ≤0.06->8 0.12 4 89
S. agalactiae, group B (81)
    Telavancin 0.03-0.12 0.06 0.06
    Vancomycin 0.25-1 0.25 0.5 100
    Daptomycin 0.06-0.5 0.25 0.25 100
    Linezolid 0.25-2 1 1 100
    Penicillin ≤0.06->2 ≤0.06 ≤0.06 96
    Clindamycin ≤0.03->0.25 0.06 >0.25 86
    Erythromycin ≤0.015->1 0.06 >1 62
    Telithromycin 0.004-0.5 0.015 0.25
    Trimethoprim-sulfamethoxazoleb ≤0.06-2 0.12 0.12
    Cefuroxime ≤ 0.12->4 ≤0.12 ≤0.12
    Ceftriaxone 0.03->4 0.06 0.06 96
    Levofloxacin ≤0.12->8 0.5 1 99
    Tetracycline ≤0.06->8 >8 >8 16
Viridans group streptococci (8)f
    Telavancin 0.015-0.06 N/Ae N/A
    Vancomycin 0.25-1 N/A N/A 100
    Daptomycin 0.25-1 N/A N/A 100
    Linezolid 0.5-2 N/A N/A 100
    Penicillin ≤0.06->2 N/A N/A 62
    Clindamycin ≤0.03->0.25 N/A N/A 88
    Erythromycin ≤0.015->1 N/A N/A 63
    Telithromycin 0.004-0.25 N/A N/A
    Trimethoprim-sulfamethoxazoleb ≤0.06-4 N/A N/A
    Cefuroxime ≤0.12->4 N/A N/A
    Ceftriaxone 0.03->4 N/A N/A 75
    Levofloxacin ≤0.12-1 N/A N/A 100
    Tetracycline 0.12->8 N/A N/A 75
E. faecalis, vancomycin resistant, VanA (21)
    Telavancin 4-32 8 16
    Vancomycin 128->512 512 >512 0
    Teicoplanin 32->128 64 >128 0
    Ampicillin ≤0.25-128 1 64 81
    Ciprofloxacin 0.25->32 >32 >32 14
    Daptomycin 0.5-4 1 2 100
    Linezolid 1-2 1 2 100
E. faecalis, vancomycin resistant, VanB (5)
    Telavancin 0.25-1 N/A N/A
    Vancomycin 32-256 N/A N/A 0
    Teicoplanin 0.5-1 N/A N/A 100
    Ampicillin ≤0.25-64 N/A N/A 60
    Ciprofloxacin 32->32 N/A N/A 0
    Daptomycin 0.5-4 N/A N/A 100
    Linezolid 0.5-2 N/A N/A 100
E. faecium, vancomycin resistant, VanA (159)
    Telavancin 2-16 8 16
    Vancomycin 64->512 512 >512 0
    Teicoplanin 16->128 64 >128 0
    Ampicillin 16->128 64 128 0
    Ciprofloxacin 2->32 >32 >32 0
    Daptomycin 0.5-8 2 4 98
    Linezolid 0.25-32 2 2 99
    Quinupristin-dalfopristin 0.25-16 0.5 1 98
E. faecium, vancomycin resistant, VanB (27)
    Telavancin 0.06-2 0.5 2
    Vancomycin 32->512 512 >512 0
    Teicoplanin 0.25-4 0.5 1 100
    Ampicillin 0.5-128 64 64 22
    Ciprofloxacin 8->32 >32 >32 0
    Daptomycin 0.25-8 2 4 93
    Linezolid 0.5-4 2 2 96
    Quinupristin-dalfopristin 0.5->32 1 8 67
a

MIC interpretive criteria from CLSI document M100-S17 used for determination of % Susceptible (—, breakpoint not available) (4).

b

MICs reported based on concentration of trimethoprim.

c

Includes two isolates of S. auricularis, one S. capitis, five S. haemolyticus, eight S. hominis subsp. novobiosepticus, and one S. saprophyticus.

d

Multidrug-resistant S. pneumoniae.

e

For MIC50 and MIC90, N/A indicates that the sample size was insufficient to calculate.

f

Includes three isolates of S. mitis, two S. intermedius, and one each of S. oralis, S. constellatus, and S. viridans.

g

Telavancin quality controls for all MIC experiments were within CLSI-defined ranges: S. aureus ATCC 29213, 0.12 to 1 μg/ml; S. pneumoniae ATCC 49619, 0.004 to 0.03 μg/ml; and E. faecalis ATCC 29212, 0.12 to 0.5 μg/ml (4).

The telavancin MIC90 against 74 MRSE and 17 other CoNS that were also resistant to methicillin was 1 μg/ml. Based on MIC90 comparisons, telavancin was more potent against this group of organisms than were vancomycin (MIC90 = 2 μg/ml) and teicoplanin (MIC90 = 16 μg/ml). Telavancin MICs against 16 teicoplanin nonsusceptible MRCoNS ranged from 0.25 to 0.5 μg/ml.

All streptococci were highly susceptible to telavancin, including penicillin-intermediate and -resistant S. pneumoniae and MDRSP (MIC90 = 0.03 μg/ml for all), group A and group B streptococci (MIC90 = 0.06 μg/ml), and viridans group streptococci (MIC range, 0.015 to 0.06 μg/ml). All streptococci were inhibited by ≤0.12 μg/ml of telavancin. The activities of telavancin (MIC90 = 0.03 μg/ml), vancomycin (MIC90 = 0.5 μg/ml), linezolid (MIC90 = 1 μg/ml), and telithromycin (MIC90 = 0.5 μg/ml) against all tested streptococci were unaffected by resistance to other agents, including the activities against MDRSP isolates with concurrent resistance to penicillin, erythromycin, trimethoprim-sulfamethoxazole, cefuroxime, and tetracycline. Some strains of MDRSP tested in this study were also nonsusceptible to other agents, including levofloxacin (5% nonsusceptible; MIC90 = 1 μg/ml), clindamycin (27% nonsusceptible; MIC90 = >0.25 μg/ml), and ceftriaxone (23% nonsusceptible; MIC90 = 2 μg/ml).

Telavancin activity against all 212 tested VRE covered a broad MIC range (0.06 to 32 μg/ml). Based upon MIC90 comparisons, telavancin was at least 32- and 8-fold more active than vancomycin and teicoplanin, respectively, against all tested enterococci. A bimodal distribution of telavancin MICs was observed (Fig. 1). All 32 VanB-type isolates were inhibited by ≤2 μg/ml telavancin and displayed susceptibility (MIC90 = 2 μg/ml) comparable to that reported for vancomycin-sensitive enterococci (7, 8). Telavancin MICs were elevated against VanA-type VRE (MIC50/90 = 8 and 16 μg/ml). Daptomycin and linezolid were the most-active agents tested against the 212 VRE with respective MIC90s of 4 and 2 μg/ml. Quinupristin-dalfopristin was one of the most-active agents against vancomycin-resistant Enterococcus faecium, with an MIC90 of 1 μg/ml.

FIG. 1.

FIG. 1.

Distribution of telavancin MICs against VRE. Filled bars, VanB-type isolates; open bars, VanA-type isolates.

Time-kill curve study results for seven strains are presented in Table 2. Telavancin was bactericidal (≥3-log10 inoculum reduction) against all three methicillin-resistant staphylococci by 8 h at ≥2× MIC. Vancomycin was also bactericidal against these strains, with regrowth seen against the MRSE isolate by 24 h at 8× MIC, while linezolid produced a bactericidal effect at 8× MIC against two of the three strains tested by 24 h. Telavancin was bactericidal against all tested streptococci at concentrations ranging from 2× MIC (0.03 μg/ml) for the MDRSP isolate to 8× MIC (0.5 μg/ml) for the S. pyogenes isolate. Vancomycin and linezolid were both bactericidal against two of the three tested streptococci at 8× MIC. Telavancin and linezolid were both bacteriostatic against the VanB E. faecalis isolate, reducing the initial inoculum by 1.1 and 1.0 log10 CFU/ml, respectively, at 8× MIC.

TABLE 2.

Kill kinetics of telavancin and comparators against resistant gram-positive isolates

Organismb Antibiotic MIC (μg/ml) Concentration tested (μg/ml) Change in log10 CFU/ml at indicated time (h)a
2 4 8 24
S. aureus Telavancin 0.5 1 −0.7 −1.3 −3.4c −2.1
2 −0.6 −1.6 3.1 3.4
4 −0.7 −1.7 3.4 3.4
Vancomycin 1 8 −0.4 −2.2 3.4 3.4
Linezolid 2 16 −0.3 −0.8 −2.3 3.4
S. aureus Telavancin 0.5 1 −0.9 −1.8 −3.2 −2.7
2 −1.0 −2.8 −2.7 −2.8
4 −1.2 −1.8 −3.0 3.3
Vancomycin 0.5 4 −0.7 −1.6 −2.9 3.3
Linezolid 2 16 −0.2 0.03 −0.7 −3.1
S. epidermidis Telavancin 1 2 −1.0 −1.8 −3.2 3.3
4 −0.5 −2.7 3.3 3.3
8 −0.5 −3.2 3.3 3.3
Vancomycin 2 16 −0.2 −1.4 −3.3 −2.4
Linezolid 2 16 −1.2 −1.1 −1.4 −2.3
S. pneumoniae Telavancin 0.015 0.03 −1.1 −2.7 3.4 3.4
0.06 −1.0 −2.1 3.4 3.4
0.12 −1.1 −1.9 −3.3 3.4
Vancomycin 0.25 2 −1.8 −3.0 3.4 3.4
Linezolid 1 8 −1.2 −1.7 −2.6 3.4
S. agalactiae Telavancin 0.06 0.12 −1.0 −0.8 −2.3 −0.6
0.25 −1.0 −0.9 −1.6 3.6
0.5 −0.87 −1.0 −1.6 3.6
Vancomycin 0.25 2 −0.8 −0.8 −1.0 −2.7
Linezolid 1 8 −1.1 −0.9 −1.8 3.7
S. pyogenes Telavancin 0.06 0.12 −0.4 −0.4 −0.5 2.2
0.25 −0.7 −1.8 −2.5 −2.2
0.5 −0.9 −1.6 −2.3 3.1
Vancomycin 0.25 2 −1.8 −2.7 3.1 3.1
Linezolid 1 8 −0.6 −1.2 −2.7 −2.7
E. faecalis Telavancin 1 2 −0.5 −0.5 −0.6 −0.8
4 −0.5 −0.5 −0.7 −1.2
8 −0.5 −0.5 −0.7 −1.1
Linezolid 1 8 −0.2 −0.2 −0.5 −1.0
a

Data represent mean values obtained from three independent experiments.

b

S. aureus, MED 2028 (top) and MED 1805 (bottom); S. epidermidis, ATCC 35984; S. pneumoniae, MED 1090; S. agalactiae, MED 2038; S. pyogenes, MED 2040; E. faecalis, ATCC 51575.

c

Bold type indicates plate counts that reached the lower limit of quantitation.

Our results confirm the potent in vitro inhibitory and bactericidal activities of telavancin against important and emerging antimicrobial-resistant, gram-positive pathogens. Based upon MIC90 comparisons, telavancin was consistently more active than vancomycin and teicoplanin against all organisms tested and showed potency equal to or greater than daptomycin and linezolid against all strain types except VanA-type VRE. These results, in concert with previously published reports, highlight the potential role of telavancin in the treatment of serious gram-positive infections and support the continued clinical evaluation of this new agent.

Footnotes

Published ahead of print on 28 April 2008.

REFERENCES

  • 1.Baquero, F. 1997. Gram-positive resistance: challenge for the development of new antibiotics. J. Antimicrob. Chemother. 39(Suppl. A):1-6. [DOI] [PubMed] [Google Scholar]
  • 2.Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10:781-791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 7th ed. CLSI document M7-A7. CLSI, Wayne, PA.
  • 4.Clinical and Laboratory Standards Institute. 2007. Performance standards for antimicrobial susceptibility testing; 15th informational supplement. CLSI document M100-S17. CLSI, Wayne, PA.
  • 5.Goldstein, E. J., D. M. Citron, C. V. Merriam, Y. A. Warren, K. L. Tyrrell, and H. T. Fernandez. 2004. In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp. Antimicrob. Agents Chemother. 48:2149-2152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hiramatsu, K., L. Cui, M. Kuroda, and T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9:486-493. [DOI] [PubMed] [Google Scholar]
  • 7.Jansen, W. T., A. Verel, J. Verhoef, and D. Milatovic. 2007. In vitro activity of telavancin against gram-positive clinical isolates recently obtained in Europe. Antimicrob. Agents Chemother. 51:3420-3424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.King, A., I. Phillips, and K. Kaniga. 2004. Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against gram-positive bacteria. J. Antimicrob. Chemother. 53:797-803. [DOI] [PubMed] [Google Scholar]
  • 9.Leuthner, K. D., C. M. Cheung, and M. J. Rybak. 2006. Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 58:338-343. [DOI] [PubMed] [Google Scholar]
  • 10.Lowy, F. D. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Investig. 111:1265-1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Maranan, M. C., B. Moreira, S. Boyle-Vavra, and R. S. Daum. 1997. Antimicrobial resistance in staphylococci. Epidemiology, molecular mechanisms, and clinical relevance. Infect. Dis. Clin. N. Am. 11:813-849. [DOI] [PubMed] [Google Scholar]
  • 12.National Committee for Clinical Laboratory Standards. 1999. Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A. NCCLS, Wayne, PA.
  • 13.Pace, J. L., K. Krause, D. Johnston, D. Debabov, T. Wu, L. Farrington, C. Lane, D. L. Higgins, B. Christensen, J. K. Judice, and K. Kaniga. 2003. In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob. Agents Chemother. 47:3602-3604. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES