Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2001 Apr;2(2):69–79. doi: 10.1002/cfg.73

Whole Genome Analysis of a Wine Yeast Strain

Nicole C Hauser 1, Kurt Fellenberg 1,2, Rosario Gil 3, Sonja Bastuck 1, Jörg D Hoheisel 1, José E Pérez-Ortín 1,3,
PMCID: PMC2447197  PMID: 18628902

Abstract

Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples.

Full Text

The Full Text of this article is available as a PDF (517.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J., Puskas-Rozsa S., Simlar J., Wilke C. M. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genet. 1992 Jul;22(1):13–19. doi: 10.1007/BF00351736. [DOI] [PubMed] [Google Scholar]
  2. Bakalinsky A. T., Snow R. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast. 1990 Sep-Oct;6(5):367–382. doi: 10.1002/yea.320060503. [DOI] [PubMed] [Google Scholar]
  3. Beissbarth T., Fellenberg K., Brors B., Arribas-Prat R., Boer J., Hauser N. C., Scheideler M., Hoheisel J. D., Schütz G., Poustka A. Processing and quality control of DNA array hybridization data. Bioinformatics. 2000 Nov;16(11):1014–1022. doi: 10.1093/bioinformatics/16.11.1014. [DOI] [PubMed] [Google Scholar]
  4. Bidenne C., Blondin B., Dequin S., Vezinhet F. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet. 1992 Jul;22(1):1–7. doi: 10.1007/BF00351734. [DOI] [PubMed] [Google Scholar]
  5. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998 Jan 30;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  6. Carlson M., Celenza J. L., Eng F. J. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol Cell Biol. 1985 Nov;5(11):2894–2902. doi: 10.1128/mcb.5.11.2894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavalieri D., Townsend J. P., Hartl D. L. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12369–12374. doi: 10.1073/pnas.210395297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Codón A. C., Benítez T., Korhola M. Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol. 1998 Feb;49(2):154–163. doi: 10.1007/s002530051152. [DOI] [PubMed] [Google Scholar]
  9. Cox K. H., Pinchak A. B., Cooper T. G. Genome-wide transcriptional analysis in S. cerevisiae by mini-array membrane hybridization. Yeast. 1999 Jun 15;15(8):703–713. doi: 10.1002/(SICI)1097-0061(19990615)15:8<703::AID-YEA413>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  10. DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
  11. Galitski T., Saldanha A. J., Styles C. A., Lander E. S., Fink G. R. Ploidy regulation of gene expression. Science. 1999 Jul 9;285(5425):251–254. doi: 10.1126/science.285.5425.251. [DOI] [PubMed] [Google Scholar]
  12. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  13. Guijo S., Mauricio J. C., Salmon J. M., Ortega J. M. Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines. Yeast. 1997 Feb;13(2):101–117. doi: 10.1002/(SICI)1097-0061(199702)13:2<101::AID-YEA66>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  14. Hauser N. C., Vingron M., Scheideler M., Krems B., Hellmuth K., Entian K. D., Hoheisel J. D. Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast. 1998 Sep 30;14(13):1209–1221. doi: 10.1002/(SICI)1097-0061(19980930)14:13<1209::AID-YEA311>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  15. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  16. Holstege F. C., Jennings E. G., Wyrick J. J., Lee T. I., Hengartner C. J., Green M. R., Golub T. R., Lander E. S., Young R. A. Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1998 Nov 25;95(5):717–728. doi: 10.1016/s0092-8674(00)81641-4. [DOI] [PubMed] [Google Scholar]
  17. Hughes T. R., Marton M. J., Jones A. R., Roberts C. J., Stoughton R., Armour C. D., Bennett H. A., Coffey E., Dai H., He Y. D. Functional discovery via a compendium of expression profiles. Cell. 2000 Jul 7;102(1):109–126. doi: 10.1016/s0092-8674(00)00015-5. [DOI] [PubMed] [Google Scholar]
  18. Jordan I. K., McDonald J. F. Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics. 1999 Apr;151(4):1341–1351. doi: 10.1093/genetics/151.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu H., Styles C. A., Fink G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 1996 Nov;144(3):967–978. doi: 10.1093/genetics/144.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu L., Zeng M., Hausladen A., Heitman J., Stamler J. S. Protection from nitrosative stress by yeast flavohemoglobin. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4672–4676. doi: 10.1073/pnas.090083597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Masneuf I., Hansen J., Groth C., Piskur J., Dubourdieu D. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol. 1998 Oct;64(10):3887–3892. doi: 10.1128/aem.64.10.3887-3892.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Naumov G. I., Naumova E. S., Michels C. A. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus. Genetics. 1994 Mar;136(3):803–812. doi: 10.1093/genetics/136.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naumov G. I., Naumova E. S., Sancho E. D., Korhola M. P. Polymeric SUC genes in natural populations of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1996 Jan 1;135(1):31–35. doi: 10.1111/j.1574-6968.1996.tb07962.x. [DOI] [PubMed] [Google Scholar]
  24. Naumov G., Turakainen H., Naumova E., Aho S., Korhola M. A new family of polymorphic genes in Saccharomyces cerevisiae: alpha-galactosidase genes MEL1-MEL7. Mol Gen Genet. 1990 Oct;224(1):119–128. doi: 10.1007/BF00259458. [DOI] [PubMed] [Google Scholar]
  25. Ness F., Aigle M. RTM1: a member of a new family of telomeric repeated genes in yeast. Genetics. 1995 Jul;140(3):945–956. doi: 10.1093/genetics/140.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Park H., Bakalinsky A. T. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast. 2000 Jul;16(10):881–888. doi: 10.1002/1097-0061(200007)16:10<881::AID-YEA576>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  27. Pretorius I. S. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast. 2000 Jun 15;16(8):675–729. doi: 10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  28. Puig S., Pérez-Ortín J. E. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast. 2000 Jan 30;16(2):139–148. doi: 10.1002/(SICI)1097-0061(20000130)16:2<139::AID-YEA512>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  29. Puig S., Querol A., Barrio E., Pérez-Ortín J. E. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol. 2000 May;66(5):2057–2061. doi: 10.1128/aem.66.5.2057-2061.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rachidi N., Barre P., Blondin B. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet. 1999 Jun;261(4-5):841–850. doi: 10.1007/s004380050028. [DOI] [PubMed] [Google Scholar]
  31. Sancho E. D., Hernandez E., Rodriguez-Navarro A. Presumed Sexual Isolation in Yeast Populations during Production of Sherrylike Wine. Appl Environ Microbiol. 1986 Feb;51(2):395–397. doi: 10.1128/aem.51.2.395-397.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wodicka L., Dong H., Mittmann M., Ho M. H., Lockhart D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 1997 Dec;15(13):1359–1367. doi: 10.1038/nbt1297-1359. [DOI] [PubMed] [Google Scholar]
  33. Zhao X. J., Raitt D., V Burke P., Clewell A. S., Kwast K. E., Poyton R. O. Function and expression of flavohemoglobin in Saccharomyces cerevisiae. Evidence for a role in the oxidative stress response. J Biol Chem. 1996 Oct 11;271(41):25131–25138. doi: 10.1074/jbc.271.41.25131. [DOI] [PubMed] [Google Scholar]
  34. ter Linde J. J., Liang H., Davis R. W., Steensma H. Y., van Dijken J. P., Pronk J. T. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol. 1999 Dec;181(24):7409–7413. doi: 10.1128/jb.181.24.7409-7413.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES