Abstract
Now that complete genome sequences are available for a variety of organisms, the elucidation of gene functions involved in metabolism necessarily includes a better understanding of cellular responses upon mutations on all levels of gene products, mRNA, proteins, and metabolites. Such progress is essential since the observable properties of organisms – the phenotypes – are produced by the genotype in juxtaposition with the environment. Whereas much has been done to make mRNA and protein profiling possible, considerably less effort has been put into profiling the end products of gene expression, metabolites. To date, analytical approaches have been aimed primarily at the accurate quantification of a number of pre-defined target metabolites, or at producing fingerprints of metabolic changes without individually determining metabolite identities. Neither of these approaches allows the formation of an in-depth understanding of the biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for sample preparation and analytical techniques, a number of chemically different classes of compounds can be quantified simultaneously to enable such understanding. In this review, the terms describing various metabolite-oriented approaches are given, and the differences among these approaches are outlined. Metabolite target analysis, metabolite profiling, metabolomics, and metabolic fingerprinting are considered. For each approach, a number of examples are given, and potential applications are discussed.
Full Text
The Full Text of this article is available as a PDF (173.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. A., Chen Z., Landman P., Colmer T. D. Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem. 1999 Jan 1;266(1):77–84. doi: 10.1006/abio.1998.2906. [DOI] [PubMed] [Google Scholar]
- Adams R. F. Determination of amino acid profiles in biological samples by gas chromatography. J Chromatogr. 1974 Aug 14;95(2):189–212. doi: 10.1016/s0021-9673(00)84078-9. [DOI] [PubMed] [Google Scholar]
- Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000 Jul 27;406(6794):378–382. doi: 10.1038/35019019. [DOI] [PubMed] [Google Scholar]
- Attwood T. K. Genomics. The Babel of bioinformatics. Science. 2000 Oct 20;290(5491):471–473. doi: 10.1126/science.290.5491.471. [DOI] [PubMed] [Google Scholar]
- Bates C. J. Vitamin analysis. Ann Clin Biochem. 1997 Nov;34(Pt 6):599–626. doi: 10.1177/000456329703400604. [DOI] [PubMed] [Google Scholar]
- Beaudry F., Yves Le Blanc J. C., Coutu M., Ramier I., Moreau J. P., Brown N. K. Metabolite profiling study of propranolol in rat using LC/MS/MS analysis. Biomed Chromatogr. 1999 Aug;13(5):363–369. doi: 10.1002/(SICI)1099-0801(199908)13:5<363::AID-BMC894>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Beuerle T., Schwab W. Metabolic profile of linoleic acid in stored apples: formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid. Lipids. 1999 Apr;34(4):375–380. doi: 10.1007/s11745-999-0375-7. [DOI] [PubMed] [Google Scholar]
- Bittner M., Meltzer P., Trent J. Data analysis and integration: of steps and arrows. Nat Genet. 1999 Jul;22(3):213–215. doi: 10.1038/10265. [DOI] [PubMed] [Google Scholar]
- Bouchereau A., Guénot P., Larher F. Analysis of amines in plant materials. J Chromatogr B Biomed Sci Appl. 2000 Sep 29;747(1-2):49–67. doi: 10.1016/s0378-4347(00)00286-3. [DOI] [PubMed] [Google Scholar]
- Byassee T. A., Chan W. C., Nie S. Probing single molecules in single living cells. Anal Chem. 2000 Nov 15;72(22):5606–5611. doi: 10.1021/ac000705j. [DOI] [PubMed] [Google Scholar]
- Christensen B., Nielsen J. Metabolic network analysis of Penicillium chrysogenum using (13)C-labeled glucose. Biotechnol Bioeng. 2000 Jun 20;68(6):652–659. [PubMed] [Google Scholar]
- Cornish-Bowden A., Cárdenas M. L. From genome to cellular phenotype--a role for metabolic flux analysis? Nat Biotechnol. 2000 Mar;18(3):267–268. doi: 10.1038/73696. [DOI] [PubMed] [Google Scholar]
- Dachtler M., Glaser T., Kohler K., Albert K. Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Anal Chem. 2001 Feb 1;73(3):667–674. doi: 10.1021/ac000635g. [DOI] [PubMed] [Google Scholar]
- Dieuaide-Noubhani M., Raffard G., Canioni P., Pradet A., Raymond P. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J Biol Chem. 1995 Jun 2;270(22):13147–13159. doi: 10.1074/jbc.270.22.13147. [DOI] [PubMed] [Google Scholar]
- Duffield P. H., Netting A. G. Methods for the quantitation of abscisic acid and its precursors from plant tissues. Anal Biochem. 2001 Feb 15;289(2):251–259. doi: 10.1006/abio.2000.4943. [DOI] [PubMed] [Google Scholar]
- Edwards J. S., Ibarra R. U., Palsson B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001 Feb;19(2):125–130. doi: 10.1038/84379. [DOI] [PubMed] [Google Scholar]
- Edwards J. S., Palsson B. O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5528–5533. doi: 10.1073/pnas.97.10.5528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisen M. B., Spellman P. T., Brown P. O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863–14868. doi: 10.1073/pnas.95.25.14863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fell D. A., Wagner A. The small world of metabolism. Nat Biotechnol. 2000 Nov;18(11):1121–1122. doi: 10.1038/81025. [DOI] [PubMed] [Google Scholar]
- Fiehn O., Kloska S., Altmann T. Integrated studies on plant biology using multiparallel techniques. Curr Opin Biotechnol. 2001 Feb;12(1):82–86. doi: 10.1016/s0958-1669(00)00165-8. [DOI] [PubMed] [Google Scholar]
- Fiehn O., Kopka J., Dörmann P., Altmann T., Trethewey R. N., Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000 Nov;18(11):1157–1161. doi: 10.1038/81137. [DOI] [PubMed] [Google Scholar]
- Fiehn O., Kopka J., Trethewey R. N., Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem. 2000 Aug 1;72(15):3573–3580. doi: 10.1021/ac991142i. [DOI] [PubMed] [Google Scholar]
- Fraser P. D., Pinto M. E., Holloway D. E., Bramley P. M. Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 2000 Nov;24(4):551–558. doi: 10.1046/j.1365-313x.2000.00896.x. [DOI] [PubMed] [Google Scholar]
- Gavaghan C. L., Holmes E., Lenz E., Wilson I. D., Nicholson J. K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 2000 Nov 10;484(3):169–174. doi: 10.1016/s0014-5793(00)02147-5. [DOI] [PubMed] [Google Scholar]
- Gerhardt R., Heldt H. W. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 1984 Jul;75(3):542–547. doi: 10.1104/pp.75.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giddings G., Allison G., Brooks D., Carter A. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol. 2000 Nov;18(11):1151–1155. doi: 10.1038/81132. [DOI] [PubMed] [Google Scholar]
- Gonzalez B., François J., Renaud M. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast. 1997 Nov;13(14):1347–1355. doi: 10.1002/(SICI)1097-0061(199711)13:14<1347::AID-YEA176>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Goodacre R., Shann B., Gilbert R. J., Timmins E. M., McGovern A. C., Alsberg B. K., Kell D. B., Logan N. A. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem. 2000 Jan 1;72(1):119–127. doi: 10.1021/ac990661i. [DOI] [PubMed] [Google Scholar]
- Goryanin I., Hodgman T. C., Selkov E. Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics. 1999 Sep;15(9):749–758. doi: 10.1093/bioinformatics/15.9.749. [DOI] [PubMed] [Google Scholar]
- Gu M., Kerwin J. L., Watts J. D., Aebersold R. Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry. Anal Biochem. 1997 Jan 15;244(2):347–356. doi: 10.1006/abio.1996.9915. [DOI] [PubMed] [Google Scholar]
- Gygi S. P., Corthals G. L., Zhang Y., Rochon Y., Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9390–9395. doi: 10.1073/pnas.160270797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halket J. M., Przyborowska A., Stein S. E., Mallard W. G., Down S., Chalmers R. A. Deconvolution gas chromatography/mass spectrometry of urinary organic acids--potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom. 1999;13(4):279–284. doi: 10.1002/(SICI)1097-0231(19990228)13:4<279::AID-RCM478>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Jellum E., Kvittingen E. A., Stokke O. Mass spectrometry in diagnosis of metabolic disorders. Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):57–62. doi: 10.1002/bms.1200160111. [DOI] [PubMed] [Google Scholar]
- Jeong H., Tombor B., Albert R., Oltvai Z. N., Barabási A. L. The large-scale organization of metabolic networks. Nature. 2000 Oct 5;407(6804):651–654. doi: 10.1038/35036627. [DOI] [PubMed] [Google Scholar]
- Kim K. R., Park H. G., Paik M. J., Ryu H. S., Oh K. S., Myung S. W., Liebich H. M. Gas chromatographic profiling and pattern recognition analysis of urinary organic acids from uterine myoma patients and cervical cancer patients. J Chromatogr B Biomed Sci Appl. 1998 Aug 7;712(1-2):11–22. doi: 10.1016/s0378-4347(98)00155-8. [DOI] [PubMed] [Google Scholar]
- Klapa MI, Park SM, Sinskey AJ, Stephanopoulos G. Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. Biotechnol Bioeng. 1999 Feb;62(4):375–391. doi: 10.1002/(sici)1097-0290(19990220)62:4<375::aid-bit1>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
- Lim H. K., Stellingweif S., Sisenwine S., Chan K. W. Rapid drug metabolite profiling using fast liquid chromatography, automated multiple-stage mass spectrometry and receptor-binding. J Chromatogr A. 1999 Jan 29;831(2):227–241. doi: 10.1016/s0021-9673(98)00956-x. [DOI] [PubMed] [Google Scholar]
- Meyer D. E., Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol. 1999 Nov;17(11):1112–1115. doi: 10.1038/15100. [DOI] [PubMed] [Google Scholar]
- Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999 Jan 1;27(1):29–34. doi: 10.1093/nar/27.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orth H. C., Rentel C., Schmidt P. C. Isolation, purity analysis and stability of hyperforin as a standard material from Hypericum perforatum L. J Pharm Pharmacol. 1999 Feb;51(2):193–200. doi: 10.1211/0022357991772132. [DOI] [PubMed] [Google Scholar]
- Park S. M., Klapa M. I., Sinskey A. J., Stephanopoulos G. Metabolite and isotopomer balancing in the analysis of metabolic cycles: II. Applications. Biotechnol Bioeng. 1999 Feb 20;62(4):392–401. doi: 10.1002/(sici)1097-0290(19990220)62:4<392::aid-bit2>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Pfeiffer T., Sánchez-Valdenebro I., Nuño J. C., Montero F., Schuster S. METATOOL: for studying metabolic networks. Bioinformatics. 1999 Mar;15(3):251–257. doi: 10.1093/bioinformatics/15.3.251. [DOI] [PubMed] [Google Scholar]
- Raamsdonk L. M., Teusink B., Broadhurst D., Zhang N., Hayes A., Walsh M. C., Berden J. A., Brindle K. M., Kell D. B., Rowland J. J. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol. 2001 Jan;19(1):45–50. doi: 10.1038/83496. [DOI] [PubMed] [Google Scholar]
- Roberts J. K. NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci. 2000 Jan;5(1):30–34. doi: 10.1016/s1360-1385(99)01515-0. [DOI] [PubMed] [Google Scholar]
- Robertson D. G., Reily M. D., Sigler R. E., Wells D. F., Paterson D. A., Braden T. K. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci. 2000 Oct;57(2):326–337. doi: 10.1093/toxsci/57.2.326. [DOI] [PubMed] [Google Scholar]
- Roessner U., Luedemann A., Brust D., Fiehn O., Linke T., Willmitzer L., Fernie A. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001 Jan;13(1):11–29. doi: 10.1105/tpc.13.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roessner U., Wagner C., Kopka J., Trethewey R. N., Willmitzer L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000 Jul;23(1):131–142. doi: 10.1046/j.1365-313x.2000.00774.x. [DOI] [PubMed] [Google Scholar]
- Schmidt K., Carlsen M., Nielsen J., Villadsen J. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng. 1997 Sep 20;55(6):831–840. doi: 10.1002/(SICI)1097-0290(19970920)55:6<831::AID-BIT2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Schuster S., Dandekar T., Fell D. A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 1999 Feb;17(2):53–60. doi: 10.1016/s0167-7799(98)01290-6. [DOI] [PubMed] [Google Scholar]
- Schuster S., Fell D. A., Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000 Mar;18(3):326–332. doi: 10.1038/73786. [DOI] [PubMed] [Google Scholar]
- Shannon C. E. The mathematical theory of communication. 1963. MD Comput. 1997 Jul-Aug;14(4):306–317. [PubMed] [Google Scholar]
- Shetty H. U., Holloway H. W., Rapoport S. I. Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal Biochem. 1995 Jan 1;224(1):279–285. doi: 10.1006/abio.1995.1041. [DOI] [PubMed] [Google Scholar]
- Sobczak A., Skop B., Kula B. Simultaneous determination of serum retinol and alpha- and gamma-tocopherol levels in type II diabetic patients using high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999 Jul 9;730(2):265–271. doi: 10.1016/s0378-4347(99)00141-3. [DOI] [PubMed] [Google Scholar]
- Szyperski T. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys. 1998 Feb;31(1):41–106. doi: 10.1017/s0033583598003412. [DOI] [PubMed] [Google Scholar]
- Tam Y. Y., Normanly J. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. J Chromatogr A. 1998 Mar 20;800(1):101–108. doi: 10.1016/s0021-9673(97)01051-0. [DOI] [PubMed] [Google Scholar]
- Tanaka K., West-Dull A., Hine D. G., Lynn T. B., Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980 Dec;26(13):1847–1853. [PubMed] [Google Scholar]
- Thiellement H., Bahrman N., Damerval C., Plomion C., Rossignol M., Santoni V., de Vienne D., Zivy M. Proteomics for genetic and physiological studies in plants. Electrophoresis. 1999 Jul;20(10):2013–2026. doi: 10.1002/(SICI)1522-2683(19990701)20:10<2013::AID-ELPS2013>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Thomas S., Mooney P. J., Burrell M. M., Fell D. A. Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J. 1997 Feb 15;322(Pt 1):119–127. doi: 10.1042/bj3220119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trethewey R. N., Krotzky A. J., Willmitzer L. Metabolic profiling: a Rosetta Stone for genomics? Curr Opin Plant Biol. 1999 Apr;2(2):83–85. doi: 10.1016/s1369-5266(99)80017-x. [DOI] [PubMed] [Google Scholar]
- Varner J., Ramkrishna D. Mathematical models of metabolic pathways. Curr Opin Biotechnol. 1999 Apr;10(2):146–150. doi: 10.1016/s0958-1669(99)80025-1. [DOI] [PubMed] [Google Scholar]
- Vélot C., Mixon M. B., Teige M., Srere P. A. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry. 1997 Nov 25;36(47):14271–14276. doi: 10.1021/bi972011j. [DOI] [PubMed] [Google Scholar]