Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Feb;3(1):22–27. doi: 10.1002/cfg.135

Integrating Genotypic Data With Transcriptomic and Proteomic Data

Denis C Shields 1,, Aisling M O'Halloran 1
PMCID: PMC2447235  PMID: 18628875

Abstract

Historically genotypic variation has been detected at the phenotypic level, at the metabolic level, and at the protein chemistry level. Advances in technology have allowed its direct visualisation at the level of DNA variation. Nevertheless, there is still an enormous interest in phenotypic, metabolic and protein property variability, since such variation gives insights into potential functionally important differences conferred by genetic variation. High-throughput transcriptomics and proteomics applied to different individuals drawn from a population has the potential to identify the functional consequences of genetic variability, in terms of either differences in expression of mRNA or in terms of differences in the quantities, pI(s) or molecular weight(s) of an expressed protein. Family studies can define the genetic component of such variation (segregation analysis) and with the genotyping of well-spaced markers can map the causative factors to broad chromosomal regions (linkage analysis). Association studies in the variant proteins have the greatest power to confirm the presence of cis-acting genetic variants. The most powerful study designs may combine elements of both family and association studies applied to proteomic and transcriptomic analyses. Such studies may provide appreciable advances in our understanding of the genetic aetiology of complex disorders.

Full Text

The Full Text of this article is available as a PDF (86.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L., Anderson N. G. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5421–5425. doi: 10.1073/pnas.74.12.5421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Champion K. M., Cook R. J., Tollaksen S. L., Giometti C. S. Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11338–11342. doi: 10.1073/pnas.91.24.11338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chasman D., Adams R. M. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol. 2001 Mar 23;307(2):683–706. doi: 10.1006/jmbi.2001.4510. [DOI] [PubMed] [Google Scholar]
  4. Di Castelnuovo A., de Gaetano G., Donati M. B., Iacoviello L. Platelet glycoprotein receptor IIIa polymorphism PLA1/PLA2 and coronary risk: a meta-analysis. Thromb Haemost. 2001 Apr;85(4):626–633. [PubMed] [Google Scholar]
  5. DiPaolo B. R., Speicher K. D., Speicher D. W. Identification of the amino acid mutations associated with human erythrocyte spectrin alpha II domain polymorphisms. Blood. 1993 Jul 1;82(1):284–291. [PubMed] [Google Scholar]
  6. Eisenberg D., Marcotte E. M., Xenarios I., Yeates T. O. Protein function in the post-genomic era. Nature. 2000 Jun 15;405(6788):823–826. doi: 10.1038/35015694. [DOI] [PubMed] [Google Scholar]
  7. Farrar G. J., Kenna P., Jordan S. A., Kumar-Singh R., Humphries M. M., Sharp E. M., Sheils D., Humphries P. Autosomal dominant retinitis pigmentosa: a novel mutation at the peripherin/RDS locus in the original 6p-linked pedigree. Genomics. 1992 Nov;14(3):805–807. doi: 10.1016/s0888-7543(05)80193-4. [DOI] [PubMed] [Google Scholar]
  8. Gürlek A., Güleç S., Karabulut H., Bokesoy I., Tutar E., Pamir G., Alpman A., Toydemir R., Aras O., Oral D. Relation between the insertion/deletion polymorphism of the angiotensin I converting enzyme gene and restenosis after coronary stenting. J Cardiovasc Risk. 2000 Dec;7(6):403–407. doi: 10.1177/204748730000700602. [DOI] [PubMed] [Google Scholar]
  9. Hedenfalk I., Duggan D., Chen Y., Radmacher M., Bittner M., Simon R., Meltzer P., Gusterson B., Esteller M., Kallioniemi O. P. Gene-expression profiles in hereditary breast cancer. N Engl J Med. 2001 Feb 22;344(8):539–548. doi: 10.1056/NEJM200102223440801. [DOI] [PubMed] [Google Scholar]
  10. Jansen R. C., Nap J. P. Genetical genomics: the added value from segregation. Trends Genet. 2001 Jul;17(7):388–391. doi: 10.1016/s0168-9525(01)02310-1. [DOI] [PubMed] [Google Scholar]
  11. Keavney B., McKenzie C., Parish S., Palmer A., Clark S., Youngman L., Delépine M., Lathrop M., Peto R., Collins R. Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. International Studies of Infarct Survival (ISIS) Collaborators. Lancet. 2000 Feb 5;355(9202):434–442. doi: 10.1016/s0140-6736(00)82009-7. [DOI] [PubMed] [Google Scholar]
  12. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  13. Kirov G., Jones I., McCandless F., Craddock N., Owen M. J. Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. Mol Psychiatry. 1999 Nov;4(6):558–565. doi: 10.1038/sj.mp.4000565. [DOI] [PubMed] [Google Scholar]
  14. Koch W., Kastrati A., Mehilli J., Böttiger C., von Beckerath N., Schömig A. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene is not associated with restenosis after coronary stent placement. Circulation. 2000 Jul 11;102(2):197–202. doi: 10.1161/01.cir.102.2.197. [DOI] [PubMed] [Google Scholar]
  15. Mark L. L., Haffajee A. D., Socransky S. S., Kent R. L., Jr, Guerrero D., Kornman K., Newman M., Stashenko P. Effect of the interleukin-1 genotype on monocyte IL-1beta expression in subjects with adult periodontitis. J Periodontal Res. 2000 Jun;35(3):172–177. doi: 10.1034/j.1600-0765.2000.035003172.x. [DOI] [PubMed] [Google Scholar]
  16. Mizuiri S., Hemmi H., Kumanomidou H., Iwamoto M., Miyagi M., Sakai K., Aikawa A., Ohara T., Yamada K., Shimatake H. Angiotensin-converting enzyme (ACE) I/D genotype and renal ACE gene expression. Kidney Int. 2001 Sep;60(3):1124–1130. doi: 10.1046/j.1523-1755.2001.0600031124.x. [DOI] [PubMed] [Google Scholar]
  17. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  18. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  19. Schisselbauer J. C., Hogan W. M., Buetow K. H., Tew K. D. Heterogeneity of glutathione S-transferase enzyme and gene expression in ovarian carcinoma. Pharmacogenetics. 1992 Apr;2(2):63–72. doi: 10.1097/00008571-199204000-00003. [DOI] [PubMed] [Google Scholar]
  20. Shields D. C., Ratanachaiyavong S., McGregor A. M., Collins A., Morton N. E. Combined segregation and linkage analysis of Graves disease with a thyroid autoantibody diathesis. Am J Hum Genet. 1994 Sep;55(3):540–554. [PMC free article] [PubMed] [Google Scholar]
  21. Tiranti V., Corona P., Greco M., Taanman J. W., Carrara F., Lamantea E., Nijtmans L., Uziel G., Zeviani M. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Genet. 2000 Nov 1;9(18):2733–2742. doi: 10.1093/hmg/9.18.2733. [DOI] [PubMed] [Google Scholar]
  22. Zivy M., de Vienne D. Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol. 2000 Nov;44(5):575–580. doi: 10.1023/a:1026525406953. [DOI] [PubMed] [Google Scholar]
  23. de Vienne D., Maurice A., Josse J. M., Leonardi A., Damerval C. Mapping factors controlling genetic expression. Cell Mol Biol (Noisy-le-grand) 1994 Feb;40(1):29–39. [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES