Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Feb;3(1):37–41. doi: 10.1002/cfg.138

From Gene Regulation to Gene Function: Regulatory Networks in Bacillus Subtilis

Colin R Harwood 1,, Ivan Moszer 2
PMCID: PMC2447243  PMID: 18628883

Abstract

Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis and gene regulation programmes, together with an extensive understanding of its biochemistry and physiology, makes this micro-organism a prime candidate in which to model regulatory networks in silico. In this paper we discuss combined molecular biological and bioinformatical approaches that are being developed to model this organism’s responses to changes in its environment.

Full Text

The Full Text of this article is available as a PDF (77.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar S., Gaidenko T. A., Kang C. M., O'Reilly M., Devine K. M., Price C. W. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol. 2001 Feb;183(4):1329–1338. doi: 10.1128/JB.183.4.1329-1338.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akbar S., Kang C. M., Gaidenko T. A., Price C. W. Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis. Mol Microbiol. 1997 May;24(3):567–578. doi: 10.1046/j.1365-2958.1997.3631732.x. [DOI] [PubMed] [Google Scholar]
  3. Antelmann H., Scharf C., Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol. 2000 Aug;182(16):4478–4490. doi: 10.1128/jb.182.16.4478-4490.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Appel R. D., Bairoch A., Sanchez J. C., Vargas J. R., Golaz O., Pasquali C., Hochstrasser D. F. Federated two-dimensional electrophoresis database: a simple means of publishing two-dimensional electrophoresis data. Electrophoresis. 1996 Mar;17(3):540–546. doi: 10.1002/elps.1150170324. [DOI] [PubMed] [Google Scholar]
  5. Benson A. K., Haldenwang W. G. Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2330–2334. doi: 10.1073/pnas.90.6.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernhardt J., Büttner K., Scharf C., Hecker M. Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis. Electrophoresis. 1999 Aug;20(11):2225–2240. doi: 10.1002/(SICI)1522-2683(19990801)20:11<2225::AID-ELPS2225>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  7. Biaudet V., Samson F., Bessières P. Micado--a network-oriented database for microbial genomes. Comput Appl Biosci. 1997 Aug;13(4):431–438. doi: 10.1093/bioinformatics/13.4.431. [DOI] [PubMed] [Google Scholar]
  8. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C. A., Causton H. C. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001 Dec;29(4):365–371. doi: 10.1038/ng1201-365. [DOI] [PubMed] [Google Scholar]
  9. Dufour A., Haldenwang W. G. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol. 1994 Apr;176(7):1813–1820. doi: 10.1128/jb.176.7.1813-1820.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaidenko T. A., Price C. W. General stress transcription factor sigmaB and sporulation transcription factor sigmaH each contribute to survival of Bacillus subtilis under extreme growth conditions. J Bacteriol. 1998 Jul;180(14):3730–3733. doi: 10.1128/jb.180.14.3730-3733.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harwood C. R. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol. 1992 Jul;10(7):247–256. doi: 10.1016/0167-7799(92)90233-l. [DOI] [PubMed] [Google Scholar]
  12. Hecker M., Völker U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol. 1998 Sep;29(5):1129–1136. doi: 10.1046/j.1365-2958.1998.00977.x. [DOI] [PubMed] [Google Scholar]
  13. Hulett F. M., Lee J., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M. F., Kapp N. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J Bacteriol. 1994 Mar;176(5):1348–1358. doi: 10.1128/jb.176.5.1348-1358.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hulett F. M. The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol. 1996 Mar;19(5):933–939. doi: 10.1046/j.1365-2958.1996.421953.x. [DOI] [PubMed] [Google Scholar]
  15. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A., Borchert S. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997 Nov 20;390(6657):249–256. doi: 10.1038/36786. [DOI] [PubMed] [Google Scholar]
  16. Lahooti M., Harwood C. R. Transcriptional analysis of the Bacillus subtilis teichuronic acid operon. Microbiology. 1999 Dec;145(Pt 12):3409–3417. doi: 10.1099/00221287-145-12-3409. [DOI] [PubMed] [Google Scholar]
  17. Médigue C., Rose M., Viari A., Danchin A. Detecting and analyzing DNA sequencing errors: toward a higher quality of the Bacillus subtilis genome sequence. Genome Res. 1999 Nov;9(11):1116–1127. doi: 10.1101/gr.9.11.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ogasawara N. Systematic function analysis of Bacillus subtilis genes. Res Microbiol. 2000 Mar;151(2):129–134. doi: 10.1016/s0923-2508(00)00118-2. [DOI] [PubMed] [Google Scholar]
  19. Vagner V., Dervyn E., Ehrlich S. D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology. 1998 Nov;144(Pt 11):3097–3104. doi: 10.1099/00221287-144-11-3097. [DOI] [PubMed] [Google Scholar]
  20. Vijay K., Brody M. S., Fredlund E., Price C. W. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis. Mol Microbiol. 2000 Jan;35(1):180–188. doi: 10.1046/j.1365-2958.2000.01697.x. [DOI] [PubMed] [Google Scholar]
  21. Voelker U., Luo T., Smirnova N., Haldenwang W. Stress activation of Bacillus subtilis sigma B can occur in the absence of the sigma B negative regulator RsbX. J Bacteriol. 1997 Mar;179(6):1980–1984. doi: 10.1128/jb.179.6.1980-1984.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Voelker U., Voelker A., Haldenwang W. G. Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol. 1996 Sep;178(18):5456–5463. doi: 10.1128/jb.178.18.5456-5463.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weaver D. C., Workman C. T., Stormo G. D. Modeling regulatory networks with weight matrices. Pac Symp Biocomput. 1999:112–123. doi: 10.1142/9789814447300_0011. [DOI] [PubMed] [Google Scholar]
  24. Yang X., Kang C. M., Brody M. S., Price C. W. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 1996 Sep 15;10(18):2265–2275. doi: 10.1101/gad.10.18.2265. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES