Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Apr;3(2):132–136. doi: 10.1002/cfg.156

Gramene: Development and Integration of Trait and Gene Ontologies for Rice

Pankaj Jaiswal 1, Doreen Ware 3, Junjian Ni 1, Kuan Chang 1, Wei Zhao 3, Steven Schmidt 3, Xiaokang Pan 3, Kenneth Clark 3, Leonid Teytelman 3, Samuel Cartinhour 2, Lincoln Stein 3, Susan McCouch 1,4,
PMCID: PMC2447246  PMID: 18628886

Abstract

Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.

Full Text

The Full Text of this article is available as a PDF (154.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake Judith A., Richardson Joel E., Bult Carol J., Kadin Jim A., Eppig Janan T., Mouse Genome Database Group The Mouse Genome Database (MGD): the model organism database for the laboratory mouse. Nucleic Acids Res. 2002 Jan 1;30(1):113–115. doi: 10.1093/nar/30.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chaudhury A. M., Koltunow A., Payne T., Luo M., Tucker M. R., Dennis E. S., Peacock W. J. Control of early seed development. Annu Rev Cell Dev Biol. 2001;17:677–699. doi: 10.1146/annurev.cellbio.17.1.677. [DOI] [PubMed] [Google Scholar]
  3. Dekkers Jack C. M., Hospital Frédéric. The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet. 2002 Jan;3(1):22–32. doi: 10.1038/nrg701. [DOI] [PubMed] [Google Scholar]
  4. Dwight Selina S., Harris Midori A., Dolinski Kara, Ball Catherine A., Binkley Gail, Christie Karen R., Fisk Dianna G., Issel-Tarver Laurie, Schroeder Mark, Sherlock Gavin. Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res. 2002 Jan 1;30(1):69–72. doi: 10.1093/nar/30.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FlyBase Consortium The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2002 Jan 1;30(1):106–108. doi: 10.1093/nar/30.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gale M. D., Devos K. M. Comparative genetics in the grasses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1971–1974. doi: 10.1073/pnas.95.5.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gene Ontology Consortium Creating the gene ontology resource: design and implementation. Genome Res. 2001 Aug;11(8):1425–1433. doi: 10.1101/gr.180801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keller B., Feuillet C. Colinearity and gene density in grass genomes. Trends Plant Sci. 2000 Jun;5(6):246–251. doi: 10.1016/s1360-1385(00)01629-0. [DOI] [PubMed] [Google Scholar]
  9. Mauricio R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet. 2001 May;2(5):370–381. doi: 10.1038/35072085. [DOI] [PubMed] [Google Scholar]
  10. McCouch S. Toward a plant genomics initiative: thoughts on the value of cross-species and cross-genera comparisons in the grasses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1983–1985. doi: 10.1073/pnas.95.5.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pál C., Miklós I. Epigenetic inheritance, genetic assimilation and speciation. J Theor Biol. 1999 Sep 7;200(1):19–37. doi: 10.1006/jtbi.1999.0974. [DOI] [PubMed] [Google Scholar]
  12. Tarchini R., Biddle P., Wineland R., Tingey S., Rafalski A. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell. 2000 Mar;12(3):381–391. doi: 10.1105/tpc.12.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ware Doreen, Jaiswal Pankaj, Ni Junjian, Pan Xiaokang, Chang Kuan, Clark Kenneth, Teytelman Leonid, Schmidt Steve, Zhao Wei, Cartinhour Samuel. Gramene: a resource for comparative grass genomics. Nucleic Acids Res. 2002 Jan 1;30(1):103–105. doi: 10.1093/nar/30.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES