Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Apr;3(2):161–163. doi: 10.1002/cfg.147

An Introduction to the China Rice Functional Genomics Program

Yongbiao Xue 1,, Zhihong Xu 2
PMCID: PMC2447251  PMID: 18628891

Abstract

The China Rice Functional Genomics Program (CRFGP) was initiated in 1999 by the Ministry of Science and Technology of China under the National Basic Sciences Initiative and was expected to last for an initial period of five years. The CRFGP involves 20 research groups from the Chinese Academy of Sciences and some major universities and focuses on the identification of genes controlling flowering, plant architecture, fertility, reproduction, metabolic controls and stress responses in rice through a combinatorial approach based on genetics, molecular biology and functional genomics as well as the generation of intellectual properties related to crop breeding and improvements. We will briefly describe the mission of the CRFGP as well as its recent progress.

Full Text

The Full Text of this article is available as a PDF (60.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chin H. G., Choe M. S., Lee S. H., Park S. H., Koo J. C., Kim N. Y., Lee J. J., Oh B. G., Yi G. H., Kim S. C. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 1999 Sep;19(5):615–623. doi: 10.1046/j.1365-313x.1999.00561.x. [DOI] [PubMed] [Google Scholar]
  2. Davenport R. J. Rice genome. Syngenta finishes, consortium goes on. Science. 2001 Feb 2;291(5505):807–807. doi: 10.1126/science.291.5505.807a. [DOI] [PubMed] [Google Scholar]
  3. Fischer K. S., Barton J., Khush G. S., Leung H., Cantrell R. Genomics and agriculture. Collaborations in rice. Science. 2000 Oct 13;290(5490):279–280. doi: 10.1126/science.290.5490.279. [DOI] [PubMed] [Google Scholar]
  4. Greco R., Ouwerkerk P. B., Taal A. J., Favalli C., Beguiristain T., Puigdomènech P., Colombo L., Hoge J. H., Pereira A. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol. 2001 May;46(2):215–227. doi: 10.1023/a:1010607318694. [DOI] [PubMed] [Google Scholar]
  5. Jeon J. S., Lee S., Jung K. H., Jun S. H., Jeong D. H., Lee J., Kim C., Jang S., Yang K., Nam J. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 2000 Jun;22(6):561–570. doi: 10.1046/j.1365-313x.2000.00767.x. [DOI] [PubMed] [Google Scholar]
  6. Kohli A., Xiong J., Greco R., Christou P., Pereira A. Tagged Transcriptome Display (TTD) in indica rice using Ac transposition. Mol Genet Genomics. 2001 Sep;266(1):1–11. doi: 10.1007/s004380100528. [DOI] [PubMed] [Google Scholar]
  7. Liu Y. G., Shirano Y., Fukaki H., Yanai Y., Tasaka M., Tabata S., Shibata D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6535–6540. doi: 10.1073/pnas.96.11.6535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pennisi E. Stealth genome rocks rice researchers. Science. 2000 Apr 14;288(5464):239–241. doi: 10.1126/science.288.5464.239. [DOI] [PubMed] [Google Scholar]
  9. Sasaki T., Burr B. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol. 2000 Apr;3(2):138–141. doi: 10.1016/s1369-5266(99)00047-3. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES