Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2003 Oct;4(5):479–491. doi: 10.1002/cfg.318

Proteins Interacting With Caenorhabditis elegans  Gα Subunits

Edwin Cuppen 1, Alexander M van der Linden 1, Gert Jansen 2, Ronald H A Plasterk 1,
PMCID: PMC2447299  PMID: 18629017

Abstract

To identify novel components in heterotrimeric G-protein signalling, we performed an extensive screen for proteins interacting with Caenorhabditis elegans Gα subunits. The genome of C. elegans contains homologues of each of the four mammalian classes of Gα subunits (Gs, Gi/o, Gq and G12), and 17 other Gα subunits. We tested 19 of the GGα subunits and four constitutively activated Gα subunits in a largescale yeast two-hybrid experiment. This resulted in the identification of 24 clones, representing 11 different proteins that interact with four different Gα subunits. This set includes C. elegans orthologues of known interactors of Gα subunits, such as AGS3 (LGN/PINS), CalNuc and Rap1Gap, but also novel proteins, including two members of the nuclear receptor super family and a homologue of human haspin (germ cell-specific kinase). All interactions were found to be unique for a specific Gα subunit but variable for the activation status of the Gα subunit. We used expression pattern and RNA interference analysis of the G-protein interactors in an attempt to substantiate the biological relevance of the observed interactions. Furthermore, by means of a membrane recruitment assay, we found evidence that GPA-7 and the nuclear receptor NHR-22 can interact in the animal.

Full Text

The Full Text of this article is available as a PDF (298.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessou C., Giugia J. B., Franks C. J., Holden-Dye L., Ségalat L. Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics. 1998 Dec;2(1):61–72. doi: 10.1007/s100480050053. [DOI] [PubMed] [Google Scholar]
  2. Brzostowski J. A., Kimmel A. R. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem Sci. 2001 May;26(5):291–297. doi: 10.1016/s0968-0004(01)01804-7. [DOI] [PubMed] [Google Scholar]
  3. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  4. Cismowski M. J., Takesono A., Ma C., Lizano J. S., Xie X., Fuernkranz H., Lanier S. M., Duzic E. Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat Biotechnol. 1999 Sep;17(9):878–883. doi: 10.1038/12867. [DOI] [PubMed] [Google Scholar]
  5. Drees B. L., Sundin B., Brazeau E., Caviston J. P., Chen G. C., Guo W., Kozminski K. G., Lau M. W., Moskow J. J., Tong A. A protein interaction map for cell polarity development. J Cell Biol. 2001 Aug 6;154(3):549–571. doi: 10.1083/jcb.200104057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enmark E., Gustafsson J. A. Nematode genome sequence dramatically extends the nuclear receptor superfamily. Trends Pharmacol Sci. 2000 Mar;21(3):85–87. doi: 10.1016/s0165-6147(99)01417-0. [DOI] [PubMed] [Google Scholar]
  7. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  8. Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M., Michon Anne-Marie, Cruciat Cristina-Maria. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. doi: 10.1038/415141a. [DOI] [PubMed] [Google Scholar]
  9. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  10. Gotta M., Ahringer J. Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol. 2001 Mar;3(3):297–300. doi: 10.1038/35060092. [DOI] [PubMed] [Google Scholar]
  11. Gönczy P., Echeverri C., Oegema K., Coulson A., Jones S. J., Copley R. R., Duperon J., Oegema J., Brehm M., Cassin E. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000 Nov 16;408(6810):331–336. doi: 10.1038/35042526. [DOI] [PubMed] [Google Scholar]
  12. Hajdu-Cronin Y. M., Chen W. J., Patikoglou G., Koelle M. R., Sternberg P. W. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 1999 Jul 15;13(14):1780–1793. doi: 10.1101/gad.13.14.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Han M., Sternberg P. W. Analysis of dominant-negative mutations of the Caenorhabditis elegans let-60 ras gene. Genes Dev. 1991 Dec;5(12A):2188–2198. doi: 10.1101/gad.5.12a.2188. [DOI] [PubMed] [Google Scholar]
  14. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  15. Hobert O., Tessmar K., Ruvkun G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development. 1999 Apr;126(7):1547–1562. doi: 10.1242/dev.126.7.1547. [DOI] [PubMed] [Google Scholar]
  16. Hodgkin J. Male Phenotypes and Mating Efficiency in CAENORHABDITIS ELEGANS. Genetics. 1983 Jan;103(1):43–64. doi: 10.1093/genetics/103.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jansen G., Hazendonk E., Thijssen K. L., Plasterk R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet. 1997 Sep;17(1):119–121. doi: 10.1038/ng0997-119. [DOI] [PubMed] [Google Scholar]
  18. Jansen G., Thijssen K. L., Werner P., van der Horst M., Hazendonk E., Plasterk R. H. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet. 1999 Apr;21(4):414–419. doi: 10.1038/7753. [DOI] [PubMed] [Google Scholar]
  19. Kaziro Y., Itoh H., Kozasa T., Nakafuku M., Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem. 1991;60:349–400. doi: 10.1146/annurev.bi.60.070191.002025. [DOI] [PubMed] [Google Scholar]
  20. Kimble J. E., White J. G. On the control of germ cell development in Caenorhabditis elegans. Dev Biol. 1981 Jan 30;81(2):208–219. doi: 10.1016/0012-1606(81)90284-0. [DOI] [PubMed] [Google Scholar]
  21. Korswagen H. C., Park J. H., Ohshima Y., Plasterk R. H. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 1997 Jun 15;11(12):1493–1503. doi: 10.1101/gad.11.12.1493. [DOI] [PubMed] [Google Scholar]
  22. Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis J. A., Fleming J. T. Basic culture methods. Methods Cell Biol. 1995;48:3–29. [PubMed] [Google Scholar]
  24. Liu L. X., Spoerke J. M., Mulligan E. L., Chen J., Reardon B., Westlund B., Sun L., Abel K., Armstrong B., Hardiman G. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 1999 Sep;9(9):859–867. doi: 10.1101/gr.9.9.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  26. Mendel J. E., Korswagen H. C., Liu K. S., Hajdu-Cronin Y. M., Simon M. I., Plasterk R. H., Sternberg P. W. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science. 1995 Mar 17;267(5204):1652–1655. doi: 10.1126/science.7886455. [DOI] [PubMed] [Google Scholar]
  27. Miller K. G., Emerson M. D., Rand J. B. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999 Oct;24(2):323–333. doi: 10.1016/s0896-6273(00)80847-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miyabayashi T., Palfreyman M. T., Sluder A. E., Slack F., Sengupta P. Expression and function of members of a divergent nuclear receptor family in Caenorhabditis elegans. Dev Biol. 1999 Nov 15;215(2):314–331. doi: 10.1006/dbio.1999.9470. [DOI] [PubMed] [Google Scholar]
  29. Mrowka R., Patzak A., Herzel H. Is there a bias in proteome research? Genome Res. 2001 Dec;11(12):1971–1973. doi: 10.1101/gr.206701. [DOI] [PubMed] [Google Scholar]
  30. Roayaie K., Crump J. G., Sagasti A., Bargmann C. I. The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron. 1998 Jan;20(1):55–67. doi: 10.1016/s0896-6273(00)80434-1. [DOI] [PubMed] [Google Scholar]
  31. Simmer Femke, Tijsterman Marcel, Parrish Susan, Koushika Sandhya P., Nonet Michael L., Fire Andrew, Ahringer Julie, Plasterk Ronald H. A. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol. 2002 Aug 6;12(15):1317–1319. doi: 10.1016/s0960-9822(02)01041-2. [DOI] [PubMed] [Google Scholar]
  32. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  33. Sluder A. E., Maina C. V. Nuclear receptors in nematodes: themes and variations. Trends Genet. 2001 Apr;17(4):206–213. doi: 10.1016/s0168-9525(01)02242-9. [DOI] [PubMed] [Google Scholar]
  34. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  35. Ségalat L., Elkes D. A., Kaplan J. M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science. 1995 Mar 17;267(5204):1648–1651. doi: 10.1126/science.7886454. [DOI] [PubMed] [Google Scholar]
  36. Thomas J. H., Horvitz H. R. The C. elegans gene lin-36 acts cell autonomously in the lin-35 Rb pathway. Development. 1999 Aug;126(15):3449–3459. doi: 10.1242/dev.126.15.3449. [DOI] [PubMed] [Google Scholar]
  37. Timmons L., Court D. L., Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001 Jan 24;263(1-2):103–112. doi: 10.1016/s0378-1119(00)00579-5. [DOI] [PubMed] [Google Scholar]
  38. Timmons L., Fire A. Specific interference by ingested dsRNA. Nature. 1998 Oct 29;395(6705):854–854. doi: 10.1038/27579. [DOI] [PubMed] [Google Scholar]
  39. Walhout A. J., Sordella R., Lu X., Hartley J. L., Temple G. F., Brasch M. A., Thierry-Mieg N., Vidal M. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science. 2000 Jan 7;287(5450):116–122. doi: 10.1126/science.287.5450.116. [DOI] [PubMed] [Google Scholar]
  40. van der Linden A. M., Simmer F., Cuppen E., Plasterk R. H. The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics. 2001 May;158(1):221–235. doi: 10.1093/genetics/158.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. von Mering Christian, Krause Roland, Snel Berend, Cornell Michael, Oliver Stephen G., Fields Stanley, Bork Peer. Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002 May 8;417(6887):399–403. doi: 10.1038/nature750. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES