Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2003 Dec;4(6):609–625. doi: 10.1002/cfg.343

Structure and Sequence of the Human Fast Skeletal Troponin T (TNNT3) Gene: Insight Into the Evolution of the Gene and the Origin of the Developmentally Regulated Isoforms

Raymund Stefancsik 1,2,4, Jeffrey D Randall 1,2,5, Chengjian Mao 1,6, Satyapriya Sarkar 1,2,3,
PMCID: PMC2447309  PMID: 18629027

Abstract

We describe the cloning, sequencing and structure of the human fast skeletal troponin T (TNNT3) gene located on chromosome 11p15.5. The single-copy gene encodes 19 exons and 18 introns. Eleven of these exons, 1–3, 9–15 and 18, are constitutively spliced, whereas exons 4–8 are alternatively spliced. The gene contains an additional subset of developmentally regulated and alternatively spliced exons, including a foetal exon located between exon 8 and 9 and exon 16 or α (adult) and 17 or β (foetal and neonatal). Exon phasing suggests that the majority of the alternatively spliced exons located at the 5′ end of the gene may have evolved as a result of exon shuffling, because they are of the same phase class. In contrast, the 3′ exons encoding an evolutionarily conserved heptad repeat domain, shared by both TnT and troponin I (TnI), may be remnants of an ancient ancestral gene. The sequence of the 5′ flanking region shows that the putative promoter contains motifs including binding sites for MyoD, MEF-2 and several transcription factors which may play a role in transcriptional regulation and tissue-specific expression of TnT. The coding region of TNNT3 exhibits strong similarity to the corresponding rat sequence. However, unlike the rat TnT gene, TNNT3 possesses two repeat regions of CCA and TC. The exclusive presence of these repetitive elements in the human gene indicates divergence in the evolutionary dynamics of mammalian TnT genes. Homologous muscle-specific splicing enhancer motifs are present in the introns upstream and downstream of the foetal exon, and may play a role in the developmental pattern of alternative splicing of the gene. The genomic correlates of TNNT3 are relevant to our understanding of the evolution and regulation of expression of the gene, as well as the structure and function of the protein isoforms. The nucleotide sequence of TNNT3 has been submitted to EMBL/GenBank under Accession No. AF026276.

Full Text

The Full Text of this article is available as a PDF (628.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlow D. P. Gametic imprinting in mammals. Science. 1995 Dec 8;270(5242):1610–1613. doi: 10.1126/science.270.5242.1610. [DOI] [PubMed] [Google Scholar]
  3. Benoist P., Mas J. A., Marco R., Cervera M. Differential muscle-type expression of the Drosophila troponin T gene. A 3-base pair microexon is involved in visceral and adult hypodermic muscle specification. J Biol Chem. 1998 Mar 27;273(13):7538–7546. doi: 10.1074/jbc.273.13.7538. [DOI] [PubMed] [Google Scholar]
  4. Boeke J. D. LINEs and Alus--the polyA connection. Nat Genet. 1997 May;16(1):6–7. doi: 10.1038/ng0597-6. [DOI] [PubMed] [Google Scholar]
  5. Breitbart R. E., Nadal-Ginard B. Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence. J Mol Biol. 1986 Apr 5;188(3):313–324. doi: 10.1016/0022-2836(86)90157-9. [DOI] [PubMed] [Google Scholar]
  6. Breitbart R. E., Nguyen H. T., Medford R. M., Destree A. T., Mahdavi V., Nadal-Ginard B. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell. 1985 May;41(1):67–82. doi: 10.1016/0092-8674(85)90062-5. [DOI] [PubMed] [Google Scholar]
  7. Briggs M. M., Maready M., Schmidt J. M., Schachat F. Identification of a fetal exon in the human fast troponin T gene. FEBS Lett. 1994 Aug 15;350(1):37–40. doi: 10.1016/0014-5793(94)00729-2. [DOI] [PubMed] [Google Scholar]
  8. Briggs M. M., Schachat F. Origin of fetal troponin T: developmentally regulated splicing of a new exon in the fast troponin T gene. Dev Biol. 1993 Aug;158(2):503–509. doi: 10.1006/dbio.1993.1208. [DOI] [PubMed] [Google Scholar]
  9. Cross S. H., Bird A. P. CpG islands and genes. Curr Opin Genet Dev. 1995 Jun;5(3):309–314. doi: 10.1016/0959-437x(95)80044-1. [DOI] [PubMed] [Google Scholar]
  10. Cross S. H., Charlton J. A., Nan X., Bird A. P. Purification of CpG islands using a methylated DNA binding column. Nat Genet. 1994 Mar;6(3):236–244. doi: 10.1038/ng0394-236. [DOI] [PubMed] [Google Scholar]
  11. Dao D., Frank D., Qian N., O'Keefe D., Vosatka R. J., Walsh C. P., Tycko B. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum Mol Genet. 1998 Apr;7(4):597–608. doi: 10.1093/hmg/7.4.597. [DOI] [PubMed] [Google Scholar]
  12. Farah C. S., Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J. 1995 Jun;9(9):755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
  13. Firulli A. B., Olson E. N. Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity. Trends Genet. 1997 Sep;13(9):364–369. doi: 10.1016/s0168-9525(97)01171-2. [DOI] [PubMed] [Google Scholar]
  14. Fyrberg E., Fyrberg C. C., Beall C., Saville D. L. Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J Mol Biol. 1990 Dec 5;216(3):657–675. doi: 10.1016/0022-2836(90)90390-8. [DOI] [PubMed] [Google Scholar]
  15. Gilbert W. Why genes in pieces? Nature. 1978 Feb 9;271(5645):501–501. doi: 10.1038/271501a0. [DOI] [PubMed] [Google Scholar]
  16. Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
  17. Henry I., van Heyningen V., Puech A., Scrable H., Augereau P., Boehm T., Rabbitts T., Mannens M., Rochefort H., Jones C. Reassessment of breakpoints in chromosome 11p15. Cytogenet Cell Genet. 1993;62(1):52–53. doi: 10.1159/000133444. [DOI] [PubMed] [Google Scholar]
  18. Jin J. P., Huang Q. Q., Yeh H. I., Lin J. J. Complete nucleotide sequence and structural organization of rat cardiac troponin T gene. A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J Mol Biol. 1992 Oct 20;227(4):1269–1276. doi: 10.1016/0022-2836(92)90540-z. [DOI] [PubMed] [Google Scholar]
  19. Long M., de Souza S. J., Gilbert W. Evolution of the intron-exon structure of eukaryotic genes. Curr Opin Genet Dev. 1995 Dec;5(6):774–778. doi: 10.1016/0959-437x(95)80010-3. [DOI] [PubMed] [Google Scholar]
  20. Mao C., Baumgartner A. P., Jha P. K., Huang T. H., Sarkar S. Assignment of the human fast skeletal troponin T gene (TNNT3) to chromosome 11p15.5: evidence for the presence of 11pter in a monochromosome 9 somatic cell hybrid in NIGMS mapping panel 2. Genomics. 1996 Feb 1;31(3):385–388. doi: 10.1006/geno.1996.0064. [DOI] [PubMed] [Google Scholar]
  21. Matsuoka S., Thompson J. S., Edwards M. C., Bartletta J. M., Grundy P., Kalikin L. M., Harper J. W., Elledge S. J., Feinberg A. P. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3026–3030. doi: 10.1073/pnas.93.7.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McArdle K., Allen T. S., Bucher E. A. Ca2+-dependent muscle dysfunction caused by mutation of the Caenorhabditis elegans troponin T-1 gene. J Cell Biol. 1998 Nov 30;143(5):1201–1213. doi: 10.1083/jcb.143.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Medford R. M., Nguyen H. T., Destree A. T., Summers E., Nadal-Ginard B. A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell. 1984 Sep;38(2):409–421. doi: 10.1016/0092-8674(84)90496-3. [DOI] [PubMed] [Google Scholar]
  24. Mesnard L., Logeart D., Taviaux S., Diriong S., Mercadier J. J., Samson F. Human cardiac troponin T: cloning and expression of new isoforms in the normal and failing heart. Circ Res. 1995 Apr;76(4):687–692. doi: 10.1161/01.res.76.4.687. [DOI] [PubMed] [Google Scholar]
  25. Miyamoto T., Jinno Y., Sasaki T., Ikeda Y., Masuzaki H., Niikawa N., Ishikawa M. Genomic cloning and localization to chromosome 11p15.5 of the human achaete-scute homolog 2 (ASCL2). Cytogenet Cell Genet. 1996;73(4):312–314. doi: 10.1159/000134364. [DOI] [PubMed] [Google Scholar]
  26. Morgan M. J., Earnshaw J. C., Dhoot G. K. Novel developmentally regulated exon identified in the rat fast skeletal muscle troponin T gene. J Cell Sci. 1993 Nov;106(Pt 3):903–908. doi: 10.1242/jcs.106.3.903. [DOI] [PubMed] [Google Scholar]
  27. Myers C. D., Goh P. Y., Allen T. S., Bucher E. A., Bogaert T. Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans. J Cell Biol. 1996 Mar;132(6):1061–1077. doi: 10.1083/jcb.132.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Patthy L. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett. 1987 Apr 6;214(1):1–7. doi: 10.1016/0014-5793(87)80002-9. [DOI] [PubMed] [Google Scholar]
  29. Perry S. V. Troponin T: genetics, properties and function. J Muscle Res Cell Motil. 1998 Aug;19(6):575–602. doi: 10.1023/a:1005397501968. [DOI] [PubMed] [Google Scholar]
  30. Pettenati M. J., Haines J. L., Higgins R. R., Wappner R. S., Palmer C. G., Weaver D. D. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet. 1986 Oct;74(2):143–154. doi: 10.1007/BF00282078. [DOI] [PubMed] [Google Scholar]
  31. Qian N., Frank D., O'Keefe D., Dao D., Zhao L., Yuan L., Wang Q., Keating M., Walsh C., Tycko B. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet. 1997 Nov;6(12):2021–2029. doi: 10.1093/hmg/6.12.2021. [DOI] [PubMed] [Google Scholar]
  32. Ramchatesingh J., Zahler A. M., Neugebauer K. M., Roth M. B., Cooper T. A. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol. 1995 Sep;15(9):4898–4907. doi: 10.1128/mcb.15.9.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ryan K. J., Cooper T. A. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol Cell Biol. 1996 Aug;16(8):4014–4023. doi: 10.1128/mcb.16.8.4014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Samson F., de Jong P. J., Trask B. J., Koza-Taylor P., Speer M. C., Potter T., Roses A. D., Gilbert J. R. Assignment of the human slow skeletal troponin T gene to 19q13.4 using somatic cell hybrids and fluorescence in situ hybridization analysis. Genomics. 1992 Aug;13(4):1374–1375. doi: 10.1016/0888-7543(92)90077-6. [DOI] [PubMed] [Google Scholar]
  35. Sassaman D. M., Dombroski B. A., Moran J. V., Kimberland M. L., Naas T. P., DeBerardinis R. J., Gabriel A., Swergold G. D., Kazazian H. H., Jr Many human L1 elements are capable of retrotransposition. Nat Genet. 1997 May;16(1):37–43. doi: 10.1038/ng0597-37. [DOI] [PubMed] [Google Scholar]
  36. Senapathy P., Shapiro M. B., Harris N. L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 1990;183:252–278. doi: 10.1016/0076-6879(90)83018-5. [DOI] [PubMed] [Google Scholar]
  37. Sharp P. A. Speculations on RNA splicing. Cell. 1981 Mar;23(3):643–646. doi: 10.1016/0092-8674(81)90425-6. [DOI] [PubMed] [Google Scholar]
  38. Smit A. F. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996 Dec;6(6):743–748. doi: 10.1016/s0959-437x(96)80030-x. [DOI] [PubMed] [Google Scholar]
  39. Stefancsik R., Jha P. K., Sarkar S. Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):957–962. doi: 10.1073/pnas.95.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thierfelder L., Watkins H., MacRae C., Lamas R., McKenna W., Vosberg H. P., Seidman J. G., Seidman C. E. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994 Jun 3;77(5):701–712. doi: 10.1016/0092-8674(94)90054-x. [DOI] [PubMed] [Google Scholar]
  41. Tobacman L. S., Lee R. Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem. 1987 Mar 25;262(9):4059–4064. [PubMed] [Google Scholar]
  42. Walsh C. P., Bestor T. H. Cytosine methylation and mammalian development. Genes Dev. 1999 Jan 1;13(1):26–34. doi: 10.1101/gad.13.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watkins H., McKenna W. J., Thierfelder L., Suk H. J., Anan R., O'Donoghue A., Spirito P., Matsumori A., Moravec C. S., Seidman J. G. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995 Apr 20;332(16):1058–1064. doi: 10.1056/NEJM199504203321603. [DOI] [PubMed] [Google Scholar]
  44. Wu Q. L., Jha P. K., Raychowdhury M. K., Du Y., Leavis P. C., Sarkar S. Isolation and characterization of human fast skeletal beta troponin T cDNA: comparative sequence analysis of isoforms and insight into the evolution of members of a multigene family. DNA Cell Biol. 1994 Mar;13(3):217–233. doi: 10.1089/dna.1994.13.217. [DOI] [PubMed] [Google Scholar]
  45. Yoder J. A., Walsh C. P., Bestor T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997 Aug;13(8):335–340. doi: 10.1016/s0168-9525(97)01181-5. [DOI] [PubMed] [Google Scholar]
  46. Yuan L., Qian N., Tycko B. An extended region of biallelic gene expression and rodent-human synteny downstream of the imprinted H19 gene on chromosome 11p15.5. Hum Mol Genet. 1996 Dec;5(12):1931–1937. doi: 10.1093/hmg/5.12.1931. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES