Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2003 Dec;4(6):584–600. doi: 10.1002/cfg.340

A Molecular Phylogenomic Analysis of the ILR1-Like Family of IAA Amidohydrolase Genes

James J Campanella 1,, Daniel Larko 1, John Smalley 2
PMCID: PMC2447312  PMID: 18629030

Abstract

The ILR1-like family of hydrolase genes was initially isolated in Arabidopsis thaliana and is thought to help regulate levels of free indole-3-acetic-acid.We have investigated how this family has evolved in dicotyledon, monocotyledon and gymnosperm species by employing the GenBank and TIGR databases to retrieve orthologous genes. The relationships among these sequences were assessed employing phylogenomic analyses to examine molecular evolution and phylogeny. The members of the ILR1-like family analysed were ILL1, ILL2, ILL3, ILL6, ILR1 and IAR3. Present evidence suggests that IAR3 has undergone the least evolution and is most conserved. This conclusion is based on IAR3 having the largest number of total interspecific orthologues, orthologous species and unique orthologues. Although less conserved than IAR3, DNA and protein sequence analyses of ILL1 and ILR1 suggest high conservation. Based on this conservation, IAR3, ILL1 and ILR1 may have had major roles in the physiological evolution of ‘higher’ plants. ILL3 is least conserved, with the fewest orthologous species and orthologues. The monocotyledonous orthologues for most family-members examined have evolved into two separate molecular clades from dicotyledons, indicating active evolutionary change. The monocotyledon clades are: (a) those possessing a putative endoplasmic reticulum localizing signal; and (b) those that are putative cytoplasmic hydrolases. IAR3, ILL1 and ILL6 are all highly orthologous to a gene in the gymnosperm Pinus taeda, indicating an ancient enzymatic activity. No orthologues could be detected in Chlamydomonas, moss and fern databases.

Full Text

The Full Text of this article is available as a PDF (402.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert Victor A., Oppenheimer David G., Lindqvist Charlotte. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 2002 Jul;7(7):297–301. doi: 10.1016/s1360-1385(02)02300-2. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartel B., Fink G. R. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science. 1995 Jun 23;268(5218):1745–1748. doi: 10.1126/science.7792599. [DOI] [PubMed] [Google Scholar]
  5. Campanella J. J., Ludwig-Mueller J., Town C. D. Isolation and characterization of mutants of Arabidopsis thaliana with increased resistance to growth inhibition by indoleacetic acid-amino acid conjugates. Plant Physiol. 1996 Oct;112(2):735–745. doi: 10.1104/pp.112.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campanella James J., Bitincka Ledion, Smalley John. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics. 2003 Jul 10;4:29–29. doi: 10.1186/1471-2105-4-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chou J. C., Mulbry W. W., Cohen J. D. The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence, and expression in Escherichia coli. Mol Gen Genet. 1998 Aug;259(2):172–178. doi: 10.1007/s004380050802. [DOI] [PubMed] [Google Scholar]
  8. Cohen J. D. Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L. Plant Physiol. 1982 Sep;70(3):749–753. doi: 10.1104/pp.70.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooke Todd J., Poli DorothyBelle, Sztein A. Ester, Cohen Jerry D. Evolutionary patterns in auxin action. Plant Mol Biol. 2002 Jun-Jul;49(3-4):319–338. [PubMed] [Google Scholar]
  10. Davies R. T., Goetz D. H., Lasswell J., Anderson M. N., Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell. 1999 Mar;11(3):365–376. doi: 10.1105/tpc.11.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Domagalski W., Schulze A., Bandurski R. S. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species). Plant Physiol. 1987;84:1107–1113. doi: 10.1104/pp.84.4.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kellogg E. A. Evolutionary history of the grasses. Plant Physiol. 2001 Mar;125(3):1198–1205. doi: 10.1104/pp.125.3.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kopcewicz J., Ehmann A., Bandurski R. S. Enzymatic Esterification of Indole-3-acetic Acid to myo-Inositol and Glucose. Plant Physiol. 1974 Dec;54(6):846–851. doi: 10.1104/pp.54.6.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kowalczyk M., Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001 Dec;127(4):1845–1853. [PMC free article] [PubMed] [Google Scholar]
  15. Ljung K., Ostin A., Lioussanne L., Sandberg G. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol. 2001 Jan;125(1):464–475. doi: 10.1104/pp.125.1.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin W., Lydiate D., Brinkmann H., Forkmann G., Saedler H., Cerff R. Molecular phylogenies in angiosperm evolution. Mol Biol Evol. 1993 Jan;10(1):140–162. doi: 10.1093/oxfordjournals.molbev.a039989. [DOI] [PubMed] [Google Scholar]
  17. Oliviusson P., Salaj J., Hakman I. Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Plant Mol Biol. 2001 Jun;46(3):289–299. doi: 10.1023/a:1010611605142. [DOI] [PubMed] [Google Scholar]
  18. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  19. Rice P., Longden I., Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000 Jun;16(6):276–277. doi: 10.1016/s0168-9525(00)02024-2. [DOI] [PubMed] [Google Scholar]
  20. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  21. Sonner J. M., Purves W. K. Natural Occurrence of Indole-3-acetylaspartate and Indole-3-acetylglutamate in Cucumber Shoot Tissue. Plant Physiol. 1985 Mar;77(3):784–785. doi: 10.1104/pp.77.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tam Y. Y., Epstein E., Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol. 2000 Jun;123(2):589–596. doi: 10.1104/pp.123.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M., Li W. H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201–6205. doi: 10.1073/pnas.86.16.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yang Y. W., Lai K. N., Tai P. Y., Li W. H. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol. 1999 May;48(5):597–604. doi: 10.1007/pl00006502. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES