Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Feb;5(1):91–94. doi: 10.1002/cfg.364

A Formal Language-Based Approach in Biology

Marian Gheorghe 1,, Victor Mitrana 2
PMCID: PMC2447320  PMID: 18629037

Abstract

This paper presents an overview of computational biology approaches and surveys some of the natural computing models using, in both cases, a formal language-based approach.

Full Text

The Full Text of this article is available as a PDF (77.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brendel V., Beckmann J. S., Trifonov E. N. Linguistics of nucleotide sequences: morphology and comparison of vocabularies. J Biomol Struct Dyn. 1986 Aug;4(1):11–21. doi: 10.1080/07391102.1986.10507643. [DOI] [PubMed] [Google Scholar]
  2. Brendel V., Busse H. G. Genome structure described by formal languages. Nucleic Acids Res. 1984 Mar 12;12(5):2561–2568. doi: 10.1093/nar/12.5.2561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collado-Vides J. A transformational-grammar approach to the study of the regulation of gene expression. J Theor Biol. 1989 Feb 22;136(4):403–425. doi: 10.1016/s0022-5193(89)80156-0. [DOI] [PubMed] [Google Scholar]
  4. Collado-Vides J. Grammatical model of the regulation of gene expression. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9405–9409. doi: 10.1073/pnas.89.20.9405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collado-Vides J., Gutièrrez-Ríos R. M., Bel-Enguix G. Networks of transcriptional regulation encoded in a grammatical model. Biosystems. 1998 Jun-Jul;47(1-2):103–118. doi: 10.1016/s0303-2647(98)00016-1. [DOI] [PubMed] [Google Scholar]
  6. Dassow J., Mitrana V. On some operations suggested by genome evolution. Pac Symp Biocomput. 1997:97–108. [PubMed] [Google Scholar]
  7. Dassow J., Mitrana V., Salomaa A. Context-free evolutionary grammars and the structural language of nucleic acids. Biosystems. 1997;43(3):169–177. doi: 10.1016/s0303-2647(97)00036-1. [DOI] [PubMed] [Google Scholar]
  8. Dong S., Searls D. B. Gene structure prediction by linguistic methods. Genomics. 1994 Oct;23(3):540–551. doi: 10.1006/geno.1994.1541. [DOI] [PubMed] [Google Scholar]
  9. Head T. Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull Math Biol. 1987;49(6):737–759. doi: 10.1007/BF02481771. [DOI] [PubMed] [Google Scholar]
  10. Lindenmayer A. Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. J Theor Biol. 1968 Mar;18(3):280–299. doi: 10.1016/0022-5193(68)90079-9. [DOI] [PubMed] [Google Scholar]
  11. Pevzner P. A., Borodovsky MYu, Mironov A. A. Linguistics of nucleotide sequences. I: The significance of deviations from mean statistical characteristics and prediction of the frequencies of occurrence of words. J Biomol Struct Dyn. 1989 Apr;6(5):1013–1026. doi: 10.1080/07391102.1989.10506528. [DOI] [PubMed] [Google Scholar]
  12. Sakakibara Y., Brown M., Hughey R., Mian I. S., Sjölander K., Underwood R. C., Haussler D. Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res. 1994 Nov 25;22(23):5112–5120. doi: 10.1093/nar/22.23.5112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Searls D. B. Linguistic approaches to biological sequences. Comput Appl Biosci. 1997 Aug;13(4):333–344. doi: 10.1093/bioinformatics/13.4.333. [DOI] [PubMed] [Google Scholar]
  14. Searls David B. The language of genes. Nature. 2002 Nov 14;420(6912):211–217. doi: 10.1038/nature01255. [DOI] [PubMed] [Google Scholar]
  15. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES