Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Feb;5(1):17–38. doi: 10.1002/cfg.349

A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family in Mycobacterium tuberculosis

Avinash R Shenoy 1,, K Sivakumar 2, A Krupa 2, N Srinivasan 2, Sandhya S Visweswariah 1,
PMCID: PMC2447327  PMID: 18629044

Abstract

Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis and Corynebacterium, and industrial organisms from the genus Streptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such as M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase from M. avium has been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues in M. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Contributor Information

Avinash R. Shenoy, Email: avirs@mrdg.lisc.ernet.in

Sandhya S. Visweswariah, Email: sandhya@mrdg.iisc.ernet.in

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre S., Paindavoine P., Hanocq-Quertier J., Paturiaux-Hanocq F., Tebabi P., Pays E. Families of adenylate cyclase genes in Trypanosoma brucei. Mol Biochem Parasitol. 1996 May;77(2):173–182. doi: 10.1016/0166-6851(96)02591-1. [DOI] [PubMed] [Google Scholar]
  2. Alexandre S., Paindavoine P., Tebabi P., Pays A., Halleux S., Steinert M., Pays E. Differential expression of a family of putative adenylate/guanylate cyclase genes in Trypanosoma brucei. Mol Biochem Parasitol. 1990 Dec;43(2):279–288. doi: 10.1016/0166-6851(90)90152-c. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Appleman J. Alex, Stewart Valley. Mutational analysis of a conserved signal-transducing element: the HAMP linker of the Escherichia coli nitrate sensor NarX. J Bacteriol. 2003 Jan;185(1):89–97. doi: 10.1128/JB.185.1.89-97.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aravind L., Dixit V. M., Koonin E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science. 2001 Feb 16;291(5507):1279–1284. doi: 10.1126/science.291.5507.1279. [DOI] [PubMed] [Google Scholar]
  6. Aravind L., Koonin E. V. DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res. 1999 Apr 1;27(7):1609–1618. doi: 10.1093/nar/27.7.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Aravind L., Ponting C. P. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett. 1999 Jul 1;176(1):111–116. doi: 10.1111/j.1574-6968.1999.tb13650.x. [DOI] [PubMed] [Google Scholar]
  8. Bateman Alex, Birney Ewan, Cerruti Lorenzo, Durbin Richard, Etwiller Laurence, Eddy Sean R., Griffiths-Jones Sam, Howe Kevin L., Marshall Mhairi, Sonnhammer Erik L. L. The Pfam protein families database. Nucleic Acids Res. 2002 Jan 1;30(1):276–280. doi: 10.1093/nar/30.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bentley S. D., Chater K. F., Cerdeño-Tárraga A-M, Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H., Harper D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002 May 9;417(6885):141–147. doi: 10.1038/417141a. [DOI] [PubMed] [Google Scholar]
  10. Bentley Stephen D., Maiwald Matthias, Murphy Lee D., Pallen Mark J., Yeats Corin A., Dover Lynn G., Norbertczak Halina T., Besra Gurdyal S., Quail Michael A., Harris David E. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet. 2003 Feb 22;361(9358):637–644. doi: 10.1016/S0140-6736(03)12597-4. [DOI] [PubMed] [Google Scholar]
  11. Bieger B., Essen L. O. Structural analysis of adenylate cyclases from Trypanosoma brucei in their monomeric state. EMBO J. 2001 Feb 1;20(3):433–445. doi: 10.1093/emboj/20.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brosch R., Pym A. S., Gordon S. V., Cole S. T. The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol. 2001 Sep;9(9):452–458. doi: 10.1016/s0966-842x(01)02131-x. [DOI] [PubMed] [Google Scholar]
  13. Cases I., de Lorenzo V. Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol. 1998 Jun;1(3):303–310. doi: 10.1016/s1369-5274(98)80034-9. [DOI] [PubMed] [Google Scholar]
  14. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  15. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C., Harris D. Massive gene decay in the leprosy bacillus. Nature. 2001 Feb 22;409(6823):1007–1011. doi: 10.1038/35059006. [DOI] [PubMed] [Google Scholar]
  16. Cole Stewart T. Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology. 2002 Oct;148(Pt 10):2919–2928. doi: 10.1099/00221287-148-10-2919. [DOI] [PubMed] [Google Scholar]
  17. Confer D. L., Eaton J. W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982 Sep 3;217(4563):948–950. doi: 10.1126/science.6287574. [DOI] [PubMed] [Google Scholar]
  18. Cotta M. A., Whitehead T. R., Wheeler M. B. Identification of a novel adenylate cyclase in the ruminal anaerobe, Prevotella ruminicola D31d. FEMS Microbiol Lett. 1998 Jul 15;164(2):257–260. doi: 10.1111/j.1574-6968.1998.tb13095.x. [DOI] [PubMed] [Google Scholar]
  19. Danchin A. Phylogeny of adenylyl cyclases. Adv Second Messenger Phosphoprotein Res. 1993;27:109–162. [PubMed] [Google Scholar]
  20. Danchin A., Pidoux J., Krin E., Thompson C. J., Ullmann A. The adenylate cyclase catalytic domain of Streptomyces coelicolor is carboxy-terminal. FEMS Microbiol Lett. 1993 Dec 1;114(2):145–151. doi: 10.1111/j.1574-6968.1993.tb06565.x. [DOI] [PubMed] [Google Scholar]
  21. Defer N., Best-Belpomme M., Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol. 2000 Sep;279(3):F400–F416. doi: 10.1152/ajprenal.2000.279.3.F400. [DOI] [PubMed] [Google Scholar]
  22. Drum Chester L., Yan Shui-Zhong, Bard Joel, Shen Yue-Quan, Lu Dan, Soelaiman Sandriyana, Grabarek Zenon, Bohm Andrew, Tang Wei-Jen. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature. 2002 Jan 24;415(6870):396–402. doi: 10.1038/415396a. [DOI] [PubMed] [Google Scholar]
  23. Fleischmann R. D., Alland D., Eisen J. A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M., Haft D. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol. 2002 Oct;184(19):5479–5490. doi: 10.1128/JB.184.19.5479-5490.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Galperin M. Y., Nikolskaya A. N., Koonin E. V. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett. 2001 Sep 11;203(1):11–21. doi: 10.1111/j.1574-6968.2001.tb10814.x. [DOI] [PubMed] [Google Scholar]
  25. Guo Y. L., Seebacher T., Kurz U., Linder J. U., Schultz J. E. Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J. 2001 Jul 16;20(14):3667–3675. doi: 10.1093/emboj/20.14.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hannenhalli S. S., Russell R. B. Analysis and prediction of functional sub-types from protein sequence alignments. J Mol Biol. 2000 Oct 13;303(1):61–76. doi: 10.1006/jmbi.2000.4036. [DOI] [PubMed] [Google Scholar]
  27. Hoover D. L., Friedlander A. M., Rogers L. C., Yoon I. K., Warren R. L., Cross A. S. Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun. 1994 Oct;62(10):4432–4439. doi: 10.1128/iai.62.10.4432-4439.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Horinouchi S., Kito M., Nishiyama M., Furuya K., Hong S. K., Miyake K., Beppu T. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene. 1990 Oct 30;95(1):49–56. doi: 10.1016/0378-1119(90)90412-k. [DOI] [PubMed] [Google Scholar]
  29. Horinouchi S., Ohnishi Y., Kang D. K. The A-factor regulatory cascade and cAMP in the regulation of physiological and morphological development in Streptomyces griseus. J Ind Microbiol Biotechnol. 2001 Sep;27(3):177–182. doi: 10.1038/sj.jim.7000068. [DOI] [PubMed] [Google Scholar]
  30. Jaroszewski L., Rychlewski L., Reed J. C., Godzik A. ATP-activated oligomerization as a mechanism for apoptosis regulation: fold and mechanism prediction for CED-4. Proteins. 2000 May 15;39(3):197–203. doi: 10.1002/(sici)1097-0134(20000515)39:3<197::aid-prot10>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  31. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998 Oct;23(10):403–405. doi: 10.1016/s0968-0004(98)01285-7. [DOI] [PubMed] [Google Scholar]
  32. Kato-Maeda M., Rhee J. T., Gingeras T. R., Salamon H., Drenkow J., Smittipat N., Small P. M. Comparing genomes within the species Mycobacterium tuberculosis. Genome Res. 2001 Apr;11(4):547–554. doi: 10.1101/gr166401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leppla S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Letunic Ivica, Goodstadt Leo, Dickens Nicholas J., Doerks Tobias, Schultz Joerg, Mott Richard, Ciccarelli Francesca, Copley Richard R., Ponting Chris P., Bork Peer. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 2002 Jan 1;30(1):242–244. doi: 10.1093/nar/30.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lowrie D. B., Aber V. R., Jackett P. S. Phagosome-lysosome fusion and cyclic adenosine 3':5'-monophosphate in macrophages infected with Mycobacterium microti, Mycobacterium bovis BCG or Mycobacterium lepraemurium. J Gen Microbiol. 1979 Feb;110(2):431–441. doi: 10.1099/00221287-110-2-431. [DOI] [PubMed] [Google Scholar]
  36. Lowrie D. B., Jackett P. S., Ratcliffe N. A. Mycobacterium microti may protect itself from intracellular destruction by releasing cyclic AMP into phagosomes. Nature. 1975 Apr 17;254(5501):600–602. doi: 10.1038/254600a0. [DOI] [PubMed] [Google Scholar]
  37. Lynch T. J., Tallant E. A., Cheung W. Y. Brevibacterium liquefaciens adenylate cyclase and its in vivo stimulation by pyruvate. J Bacteriol. 1975 Dec;124(3):1106–1112. doi: 10.1128/jb.124.3.1106-1112.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McCue L. A., McDonough K. A., Lawrence C. E. Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res. 2000 Feb;10(2):204–219. doi: 10.1101/gr.10.2.204. [DOI] [PubMed] [Google Scholar]
  39. Mowbray S. L., Sandgren M. O. Chemotaxis receptors: a progress report on structure and function. J Struct Biol. 1998 Dec 15;124(2-3):257–275. doi: 10.1006/jsbi.1998.4043. [DOI] [PubMed] [Google Scholar]
  40. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999 Jan;9(1):27–43. [PubMed] [Google Scholar]
  41. Notredame C., Higgins D. G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000 Sep 8;302(1):205–217. doi: 10.1006/jmbi.2000.4042. [DOI] [PubMed] [Google Scholar]
  42. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  43. Pays E., Lips S., Nolan D., Vanhamme L., Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol. 2001 Apr 25;114(1):1–16. doi: 10.1016/s0166-6851(01)00242-0. [DOI] [PubMed] [Google Scholar]
  44. Peters E. P., Wilderspin A. F., Wood S. P., Zvelebil M. J., Sezer O., Danchin A. A pyruvate-stimulated adenylate cyclase has a sequence related to the fes/fps oncogenes and to eukaryotic cyclases. Mol Microbiol. 1991 May;5(5):1175–1181. doi: 10.1111/j.1365-2958.1991.tb01890.x. [DOI] [PubMed] [Google Scholar]
  45. Rocha C. R., Schröppel K., Harcus D., Marcil A., Dignard D., Taylor B. N., Thomas D. Y., Whiteway M., Leberer E. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell. 2001 Nov;12(11):3631–3643. doi: 10.1091/mbc.12.11.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rolin S., Paindavoine P., Hanocq-Quertier J., Hanocq F., Claes Y., Le Ray D., Overath P., Pays E. Transient adenylate cyclase activation accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms. Mol Biochem Parasitol. 1993 Sep;61(1):115–125. doi: 10.1016/0166-6851(93)90164-s. [DOI] [PubMed] [Google Scholar]
  47. Schäffer A. A., Wolf Y. I., Ponting C. P., Koonin E. V., Aravind L., Altschul S. F. IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics. 1999 Dec;15(12):1000–1011. doi: 10.1093/bioinformatics/15.12.1000. [DOI] [PubMed] [Google Scholar]
  48. Shenoy Avinash R., Srinivasan N., Subramaniam M., Visweswariah Sandhya S. Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. FEBS Lett. 2003 Jun 19;545(2-3):253–259. doi: 10.1016/s0014-5793(03)00580-5. [DOI] [PubMed] [Google Scholar]
  49. Shenoy Avinash R., Srinivasan N., Visweswariah Sandhya S. The ascent of nucleotide cyclases: conservation and evolution of a theme. J Biosci. 2002 Mar;27(2):85–91. doi: 10.1007/BF02703763. [DOI] [PubMed] [Google Scholar]
  50. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7534–7539. doi: 10.1073/pnas.121172498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sismeiro O., Trotot P., Biville F., Vivares C., Danchin A. Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J Bacteriol. 1998 Jul;180(13):3339–3344. doi: 10.1128/jb.180.13.3339-3344.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Süsstrunk U., Pidoux J., Taubert S., Ullmann A., Thompson C. J. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol. 1998 Oct;30(1):33–46. doi: 10.1046/j.1365-2958.1998.01033.x. [DOI] [PubMed] [Google Scholar]
  53. Tang W. J., Hurley J. H. Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol. 1998 Aug;54(2):231–240. doi: 10.1124/mol.54.2.231. [DOI] [PubMed] [Google Scholar]
  54. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001 Jan 1;29(1):22–28. doi: 10.1093/nar/29.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Taylor M. C., Muhia D. K., Baker D. A., Mondragon A., Schaap P. B., Kelly J. M. Trypanosoma cruzi adenylyl cyclase is encoded by a complex multigene family. Mol Biochem Parasitol. 1999 Nov 30;104(2):205–217. doi: 10.1016/s0166-6851(99)00154-1. [DOI] [PubMed] [Google Scholar]
  56. Tesmer J. J., Sprang S. R. The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol. 1998 Dec;8(6):713–719. doi: 10.1016/s0959-440x(98)80090-0. [DOI] [PubMed] [Google Scholar]
  57. Tesmer J. J., Sunahara R. K., Gilman A. G., Sprang S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997 Dec 12;278(5345):1907–1916. doi: 10.1126/science.278.5345.1907. [DOI] [PubMed] [Google Scholar]
  58. Tucker C. L., Hurley J. H., Miller T. R., Hurley J. B. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5993–5997. doi: 10.1073/pnas.95.11.5993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Téllez-Sosa Juan, Soberón Nora, Vega-Segura Alicia, Torres-Márquez María E., Cevallos Miguel A. The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J Bacteriol. 2002 Jul;184(13):3560–3568. doi: 10.1128/JB.184.13.3560-3568.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Vissa V. D., Brennan P. J. The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol. 2001 Aug 3;2(8):REVIEWS1023–REVIEWS1023. doi: 10.1186/gb-2001-2-8-reviews1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wedel B., Garbers D. The guanylyl cyclase family at Y2K. Annu Rev Physiol. 2001;63:215–233. doi: 10.1146/annurev.physiol.63.1.215. [DOI] [PubMed] [Google Scholar]
  62. Weiss A. A., Hewlett E. L., Myers G. A., Falkow S. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J Infect Dis. 1984 Aug;150(2):219–222. doi: 10.1093/infdis/150.2.219. [DOI] [PubMed] [Google Scholar]
  63. Wirth J. J., Kierszenbaum F. Inhibitory action of elevated levels of adenosine-3':5' cyclic monophosphate on phagocytosis: effects on macrophage-Trypanosoma cruzi interaction. J Immunol. 1982 Dec;129(6):2759–2762. [PubMed] [Google Scholar]
  64. Wolfgang Matthew C., Lee Vincent T., Gilmore Meghan E., Lory Stephen. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell. 2003 Feb;4(2):253–263. doi: 10.1016/s1534-5807(03)00019-4. [DOI] [PubMed] [Google Scholar]
  65. Yeats Corin, Bentley Stephen, Bateman Alex. New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol. 2003 Feb 6;3:3–3. doi: 10.1186/1471-2180-3-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Yu Tin-Wein, Bai Linquan, Clade Dorothee, Hoffmann Dietmar, Toelzer Sabine, Trinh Khue Q., Xu Jun, Moss Steven J., Leistner Eckhard, Floss Heinz G. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7968–7973. doi: 10.1073/pnas.092697199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. van der Biezen E. A., Jones J. D. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998 Mar 26;8(7):R226–R227. doi: 10.1016/s0960-9822(98)70145-9. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES