Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Mar;5(2):128–146. doi: 10.1002/cfg.381

Phylogenetics in the Bioinformatics Culture of Understanding

Robin G Allaby 1, Mathew Woodwark 1,
PMCID: PMC2447345  PMID: 18629061

Abstract

Bioinformatics, as a relatively young discipline, has grown up in a world of high-throughput large volume data that requires automatic analysis to enable us to stay on top of it all. As a response, the bioinformatics discipline has developed strategies to find patterns in a ‘low signal : noise ratio’ environment. While the need to process large amounts of information and extract hypotheses is both laudable and inescapable, the pressures that such requirements have introduced can lead to short cuts and misapprehensions. This is particularly the case with reference to assumptions about the underlying evolutionary theories that are implicitly invoked by the algorithms utilised in the analysis pipelines. The classic example is the misuse of the term ‘homologous’ to mean ‘similar’ or even ‘functionally similar’, rather than the correct definition of ‘having the same evolutionary origin’, which may or may not imply similarity of function. In this review, we outline some of the common phylogenetic questions from a bioinformatics perspective that can be better addressed with a deeper understanding of evolutionary principles and show, with examples from the amidohydrolase and Toll families, that quite different conclusions can be drawn if such approaches are taken. This review focuses on the importance of the underlying evolutionary biology, rather than assessing the merits of different phylogenetic techniques. The relative merits of a priori and a posteriori inclusion of biological information are discussed.

Full Text

The Full Text of this article is available as a PDF (751.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal A., Eastman Q. M., Schatz D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 1998 Aug 20;394(6695):744–751. doi: 10.1038/29457. [DOI] [PubMed] [Google Scholar]
  2. Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001 Oct 18;413(6857):732–738. doi: 10.1038/35099560. [DOI] [PubMed] [Google Scholar]
  3. Allaby R. G., Brown T. A. Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops. Genetics. 2001 Mar;157(3):1331–1341. doi: 10.1093/genetics/157.3.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson K. V., Jürgens G., Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell. 1985 Oct;42(3):779–789. doi: 10.1016/0092-8674(85)90274-0. [DOI] [PubMed] [Google Scholar]
  5. Bockaert J., Pin J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999 Apr 1;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonnert T. P., Garka K. E., Parnet P., Sonoda G., Testa J. R., Sims J. E. The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett. 1997 Jan 27;402(1):81–84. doi: 10.1016/s0014-5793(96)01506-2. [DOI] [PubMed] [Google Scholar]
  7. Copley R. R., Bork P. Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. J Mol Biol. 2000 Nov 3;303(4):627–641. doi: 10.1006/jmbi.2000.4152. [DOI] [PubMed] [Google Scholar]
  8. Dehal Paramvir, Satou Yutaka, Campbell Robert K., Chapman Jarrod, Degnan Bernard, De Tomaso Anthony, Davidson Brad, Di Gregorio Anna, Gelpke Maarten, Goodstein David M. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002 Dec 13;298(5601):2157–2167. doi: 10.1126/science.1080049. [DOI] [PubMed] [Google Scholar]
  9. Eaton R. W., Karns J. S. Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J Bacteriol. 1991 Feb;173(3):1215–1222. doi: 10.1128/jb.173.3.1215-1222.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gay N. J., Keith F. J. Drosophila Toll and IL-1 receptor. Nature. 1991 May 30;351(6325):355–356. doi: 10.1038/351355b0. [DOI] [PubMed] [Google Scholar]
  11. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001 Apr 26;410(6832):1099–1103. doi: 10.1038/35074106. [DOI] [PubMed] [Google Scholar]
  12. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K. A Toll-like receptor recognizes bacterial DNA. Nature. 2000 Dec 7;408(6813):740–745. doi: 10.1038/35047123. [DOI] [PubMed] [Google Scholar]
  13. Hemmi Hiroaki, Kaisho Tsuneyasu, Takeuchi Osamu, Sato Shintaro, Sanjo Hideki, Hoshino Katsuaki, Horiuchi Takao, Tomizawa Hideyuki, Takeda Kiyoshi, Akira Shizuo. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002 Jan 22;3(2):196–200. doi: 10.1038/ni758. [DOI] [PubMed] [Google Scholar]
  14. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  15. Holm L., Sander C. An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins. 1997 May;28(1):72–82. [PubMed] [Google Scholar]
  16. Horng Tiffany, Barton Gregory M., Flavell Richard A., Medzhitov Ruslan. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature. 2002 Nov 21;420(6913):329–333. doi: 10.1038/nature01180. [DOI] [PubMed] [Google Scholar]
  17. Howard A. D., McAllister G., Feighner S. D., Liu Q., Nargund R. P., Van der Ploeg L. H., Patchett A. A. Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol Sci. 2001 Mar;22(3):132–140. doi: 10.1016/s0165-6147(00)01636-9. [DOI] [PubMed] [Google Scholar]
  18. Hughes A. L. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics. 1998 Mar;47(4):283–296. doi: 10.1007/s002510050360. [DOI] [PubMed] [Google Scholar]
  19. Hughes A. L., Yeager M. Coevolution of the mammalian chemokines and their receptors. Immunogenetics. 1999 Feb;49(2):115–124. doi: 10.1007/s002510050470. [DOI] [PubMed] [Google Scholar]
  20. Huson D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998;14(1):68–73. doi: 10.1093/bioinformatics/14.1.68. [DOI] [PubMed] [Google Scholar]
  21. Jacob F. Evolution and tinkering. Science. 1977 Jun 10;196(4295):1161–1166. doi: 10.1126/science.860134. [DOI] [PubMed] [Google Scholar]
  22. Kim G. J., Kim H. S. Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring. Biochem J. 1998 Feb 15;330(Pt 1):295–302. doi: 10.1042/bj3300295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li W. H., Gu Z., Wang H., Nekrutenko A. Evolutionary analyses of the human genome. Nature. 2001 Feb 15;409(6822):847–849. doi: 10.1038/35057039. [DOI] [PubMed] [Google Scholar]
  24. Luo C., Zheng L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics. 2000 Feb;51(2):92–98. doi: 10.1007/s002510050017. [DOI] [PubMed] [Google Scholar]
  25. Marcotte E. M., Pellegrini M., Ng H. L., Rice D. W., Yeates T. O., Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999 Jul 30;285(5428):751–753. doi: 10.1126/science.285.5428.751. [DOI] [PubMed] [Google Scholar]
  26. McGuire G., Wright F. TOPAL: recombination detection in DNA and protein sequences. Bioinformatics. 1998;14(2):219–220. doi: 10.1093/bioinformatics/14.2.219. [DOI] [PubMed] [Google Scholar]
  27. Medzhitov R., Preston-Hurlburt P., Janeway C. A., Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997 Jul 24;388(6640):394–397. doi: 10.1038/41131. [DOI] [PubMed] [Google Scholar]
  28. Mulbry W. W. Purification and Characterization of an Inducible s-Triazine Hydrolase from Rhodococcus corallinus NRRL B-15444R. Appl Environ Microbiol. 1994 Feb;60(2):613–618. doi: 10.1128/aem.60.2.613-618.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murphy P. M., Baggiolini M., Charo I. F., Hébert C. A., Horuk R., Matsushima K., Miller L. H., Oppenheim J. J., Power C. A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000 Mar;52(1):145–176. [PubMed] [Google Scholar]
  30. Muzio M., Ni J., Feng P., Dixit V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 1997 Nov 28;278(5343):1612–1615. doi: 10.1126/science.278.5343.1612. [DOI] [PubMed] [Google Scholar]
  31. Muzio M., Polentarutti N., Bosisio D., Prahladan M. K., Mantovani A. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leukoc Biol. 2000 Apr;67(4):450–456. doi: 10.1002/jlb.67.4.450. [DOI] [PubMed] [Google Scholar]
  32. Nagy I., Compernolle F., Ghys K., Vanderleyden J., De Mot R. A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol. 1995 May;61(5):2056–2060. doi: 10.1128/aem.61.5.2056-2060.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nurminsky D. I., Nurminskaya M. V., De Aguiar D., Hartl D. L. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature. 1998 Dec 10;396(6711):572–575. doi: 10.1038/25126. [DOI] [PubMed] [Google Scholar]
  34. Ooi James Y., Yagi Yoshimasa, Hu Xiaodi, Ip Y. Tony. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep. 2001 Dec 19;3(1):82–87. doi: 10.1093/embo-reports/kvf004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oshiumi Hiroyuki, Matsumoto Misako, Funami Kenji, Akazawa Takashi, Seya Tsukasa. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003 Jan 21;4(2):161–167. doi: 10.1038/ni886. [DOI] [PubMed] [Google Scholar]
  36. Page R. D. GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics. 1998;14(9):819–820. doi: 10.1093/bioinformatics/14.9.819. [DOI] [PubMed] [Google Scholar]
  37. Patthy L. Genome evolution and the evolution of exon-shuffling--a review. Gene. 1999 Sep 30;238(1):103–114. doi: 10.1016/s0378-1119(99)00228-0. [DOI] [PubMed] [Google Scholar]
  38. Piutti S., Semon E., Landry D., Hartmann A., Dousset S., Lichtfouse E., Topp E., Soulas G., Martin-Laurent F. Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil. FEMS Microbiol Lett. 2003 Apr 11;221(1):111–117. doi: 10.1016/S0378-1097(03)00168-X. [DOI] [PubMed] [Google Scholar]
  39. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. Recombination in HIV-1. Nature. 1995 Mar 9;374(6518):124–126. doi: 10.1038/374124b0. [DOI] [PubMed] [Google Scholar]
  40. Sadowsky M. J., Tong Z., de Souza M., Wackett L. P. AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. J Bacteriol. 1998 Jan;180(1):152–158. doi: 10.1128/jb.180.1.152-158.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seffernick J. L., de Souza M. L., Sadowsky M. J., Wackett L. P. Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. J Bacteriol. 2001 Apr;183(8):2405–2410. doi: 10.1128/JB.183.8.2405-2410.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Seffernick Jennifer L., Shapir Nir, Schoeb Michael, Johnson Gilbert, Sadowsky Michael J., Wackett Lawrence P. Enzymatic degradation of chlorodiamino-s-triazine. Appl Environ Microbiol. 2002 Sep;68(9):4672–4675. doi: 10.1128/AEM.68.9.4672-4675.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shao Z. Q., Behki R. Cloning of the genes for degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1. Appl Environ Microbiol. 1995 May;61(5):2061–2065. doi: 10.1128/aem.61.5.2061-2065.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shao Z. Q., Seffens W., Mulbry W., Behki R. M. Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J Bacteriol. 1995 Oct;177(20):5748–5755. doi: 10.1128/jb.177.20.5748-5755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shields D. C. Gene conversion among chemokine receptors. Gene. 2000 Apr 4;246(1-2):239–245. doi: 10.1016/s0378-1119(00)00072-x. [DOI] [PubMed] [Google Scholar]
  46. Shimizu N., Gojobori T. How can human and simian immunodeficiency viruses utilize chemokine receptors as their coreceptors? Gene. 2000 Dec 23;259(1-2):199–205. doi: 10.1016/s0378-1119(00)00432-7. [DOI] [PubMed] [Google Scholar]
  47. Storm C. E., Sonnhammer E. L. NIFAS: visual analysis of domain evolution in proteins. Bioinformatics. 2001 Apr;17(4):343–348. doi: 10.1093/bioinformatics/17.4.343. [DOI] [PubMed] [Google Scholar]
  48. Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Takeda K., Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999 Oct;11(4):443–451. doi: 10.1016/s1074-7613(00)80119-3. [DOI] [PubMed] [Google Scholar]
  49. Takeuchi O., Kawai T., Mühlradt P. F., Morr M., Radolf J. D., Zychlinsky A., Takeda K., Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001 Jul;13(7):933–940. doi: 10.1093/intimm/13.7.933. [DOI] [PubMed] [Google Scholar]
  50. Tauszig-Delamasure Servane, Bilak Hana, Capovilla Maria, Hoffmann Jules A., Imler Jean-Luc. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol. 2001 Dec 17;3(1):91–97. doi: 10.1038/ni747. [DOI] [PubMed] [Google Scholar]
  51. Topp E., Mulbry W. M., Zhu H., Nour S. M., Cuppels D. Characterization of S-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol. 2000 Aug;66(8):3134–3141. doi: 10.1128/aem.66.8.3134-3141.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]
  53. Williams M. J., Rodriguez A., Kimbrell D. A., Eldon E. D. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 1997 Oct 15;16(20):6120–6130. doi: 10.1093/emboj/16.20.6120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J. L., Tong L. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000 Nov 2;408(6808):111–115. doi: 10.1038/35040600. [DOI] [PubMed] [Google Scholar]
  55. Yamamoto Masahiro, Sato Shintaro, Hemmi Hiroaki, Sanjo Hideki, Uematsu Satoshi, Kaisho Tsuneyasu, Hoshino Katsuaki, Takeuchi Osamu, Kobayashi Masaya, Fujita Takashi. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature. 2002 Nov 21;420(6913):324–329. doi: 10.1038/nature01182. [DOI] [PubMed] [Google Scholar]
  56. Yang R. B., Mark M. R., Gray A., Huang A., Xie M. H., Zhang M., Goddard A., Wood W. I., Gurney A. L., Godowski P. J. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 1998 Sep 17;395(6699):284–288. doi: 10.1038/26239. [DOI] [PubMed] [Google Scholar]
  57. Yuan G., Bin J. C., McKay D. J., Snyder F. F. Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein. J Biol Chem. 1999 Mar 19;274(12):8175–8180. doi: 10.1074/jbc.274.12.8175. [DOI] [PubMed] [Google Scholar]
  58. Zischler H., Geisert H., von Haeseler A., Päbo S. A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature. 1995 Nov 30;378(6556):489–492. doi: 10.1038/378489a0. [DOI] [PubMed] [Google Scholar]
  59. Zuany-Amorim Claudia, Hastewell John, Walker Christoph. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov. 2002 Oct;1(10):797–807. doi: 10.1038/nrd914. [DOI] [PubMed] [Google Scholar]
  60. Zullo S., Sieu L. C., Slightom J. L., Hadler H. I., Eisenstadt J. M. Mitochondrial D-loop sequences are integrated in the rat nuclear genome. J Mol Biol. 1991 Oct 20;221(4):1223–1235. [PubMed] [Google Scholar]
  61. de Souza M. L., Sadowsky M. J., Wackett L. P. Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol. 1996 Aug;178(16):4894–4900. doi: 10.1128/jb.178.16.4894-4900.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES