Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Mar;5(2):173–178. doi: 10.1002/cfg.377

Interactome Data and Databases: Different Types of Protein Interaction

Javier De Las Rivas 1,, Alberto de Luis 1
PMCID: PMC2447346  PMID: 18629062

Abstract

In recent years, the biomolecular sciences have been driven forward by overwhelming advances in new biotechnological high-throughput experimental methods and bioinformatic genome-wide computational methods. Such breakthroughs are producing huge amounts of new data that need to be carefully analysed to obtain correct and useful scientific knowledge. One of the fields where this advance has become more intense is the study of the network of ‘protein–protein interactions’, i.e. the ‘interactome’. In this short review we comment on the main data and databases produced in this field in last 5 years. We also present a rationalized scheme of biological definitions that will be useful for a better understanding and interpretation of ‘what a protein–protein interaction is’ and ‘which types of protein–protein interactions are found in a living cell’. Finally, we comment on some assignments of interactome data to defined types of protein interaction and we present a new bioinformatic tool called APIN (Agile Protein Interaction Network browser), which is in development and will be applied to browsing protein interaction databases.

Full Text

The Full Text of this article is available as a PDF (145.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader Gary D., Betel Doron, Hogue Christopher W. V. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003 Jan 1;31(1):248–250. doi: 10.1093/nar/gkg056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baxevanis Andreas D. The Molecular Biology Database Collection: 2002 update. Nucleic Acids Res. 2002 Jan 1;30(1):1–12. doi: 10.1093/nar/30.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baxevanis Andreas D. The Molecular Biology Database Collection: 2003 update. Nucleic Acids Res. 2003 Jan 1;31(1):1–12. doi: 10.1093/nar/gkg120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dandekar T., Snel B., Huynen M., Bork P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci. 1998 Sep;23(9):324–328. doi: 10.1016/s0968-0004(98)01274-2. [DOI] [PubMed] [Google Scholar]
  5. De Las Rivas Javier, Lozano Juan Jose, Ortiz Angel R. Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res. 2002 Apr;12(4):567–583. doi: 10.1101/gr.209402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deane Charlotte M., Salwiński Łukasz, Xenarios Ioannis, Eisenberg David. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics. 2002 May;1(5):349–356. doi: 10.1074/mcp.m100037-mcp200. [DOI] [PubMed] [Google Scholar]
  7. Drewes Gerard, Bouwmeester Tewis. Global approaches to protein-protein interactions. Curr Opin Cell Biol. 2003 Apr;15(2):199–205. doi: 10.1016/s0955-0674(03)00005-x. [DOI] [PubMed] [Google Scholar]
  8. Enright A. J., Iliopoulos I., Kyrpides N. C., Ouzounis C. A. Protein interaction maps for complete genomes based on gene fusion events. Nature. 1999 Nov 4;402(6757):86–90. doi: 10.1038/47056. [DOI] [PubMed] [Google Scholar]
  9. Gaasterland T., Ragan M. A. Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb Comp Genomics. 1998;3(4):199–217. doi: 10.1089/omi.1.1998.3.199. [DOI] [PubMed] [Google Scholar]
  10. Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M., Michon Anne-Marie, Cruciat Cristina-Maria. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. doi: 10.1038/415141a. [DOI] [PubMed] [Google Scholar]
  11. Goh C. S., Bogan A. A., Joachimiak M., Walther D., Cohen F. E. Co-evolution of proteins with their interaction partners. J Mol Biol. 2000 Jun 2;299(2):283–293. doi: 10.1006/jmbi.2000.3732. [DOI] [PubMed] [Google Scholar]
  12. Graeber T. G., Eisenberg D. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nat Genet. 2001 Nov;29(3):295–300. doi: 10.1038/ng755. [DOI] [PubMed] [Google Scholar]
  13. Huynen M., Snel B., Lathe W., 3rd, Bork P. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 2000 Aug;10(8):1204–1210. doi: 10.1101/gr.10.8.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huynen Martijn A., Snel Berend, von Mering Christian, Bork Peer. Function prediction and protein networks. Curr Opin Cell Biol. 2003 Apr;15(2):191–198. doi: 10.1016/s0955-0674(03)00009-7. [DOI] [PubMed] [Google Scholar]
  15. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001 Mar 13;98(8):4569–4574. doi: 10.1073/pnas.061034498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jeong H., Mason S. P., Barabási A. L., Oltvai Z. N. Lethality and centrality in protein networks. Nature. 2001 May 3;411(6833):41–42. doi: 10.1038/35075138. [DOI] [PubMed] [Google Scholar]
  17. Legrain P., Wojcik J., Gauthier J. M. Protein--protein interaction maps: a lead towards cellular functions. Trends Genet. 2001 Jun;17(6):346–352. doi: 10.1016/s0168-9525(01)02323-x. [DOI] [PubMed] [Google Scholar]
  18. Marcotte E. M., Pellegrini M., Ng H. L., Rice D. W., Yeates T. O., Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999 Jul 30;285(5428):751–753. doi: 10.1126/science.285.5428.751. [DOI] [PubMed] [Google Scholar]
  19. Pazos F., Helmer-Citterich M., Ausiello G., Valencia A. Correlated mutations contain information about protein-protein interaction. J Mol Biol. 1997 Aug 29;271(4):511–523. doi: 10.1006/jmbi.1997.1198. [DOI] [PubMed] [Google Scholar]
  20. Pazos F., Valencia A. Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng. 2001 Sep;14(9):609–614. doi: 10.1093/protein/14.9.609. [DOI] [PubMed] [Google Scholar]
  21. Pazos Florencio, Valencia Alfonso. In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins. 2002 May 1;47(2):219–227. doi: 10.1002/prot.10074. [DOI] [PubMed] [Google Scholar]
  22. Pellegrini M., Marcotte E. M., Thompson M. J., Eisenberg D., Yeates T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4285–4288. doi: 10.1073/pnas.96.8.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ramani Arun K., Marcotte Edward M. Exploiting the co-evolution of interacting proteins to discover interaction specificity. J Mol Biol. 2003 Mar 14;327(1):273–284. doi: 10.1016/s0022-2836(03)00114-1. [DOI] [PubMed] [Google Scholar]
  24. Slonim Donna K. From patterns to pathways: gene expression data analysis comes of age. Nat Genet. 2002 Dec;32 (Suppl):502–508. doi: 10.1038/ng1033. [DOI] [PubMed] [Google Scholar]
  25. Tamames J., Casari G., Ouzounis C., Valencia A. Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol. 1997 Jan;44(1):66–73. doi: 10.1007/pl00006122. [DOI] [PubMed] [Google Scholar]
  26. Uetz P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000 Feb 10;403(6770):623–627. doi: 10.1038/35001009. [DOI] [PubMed] [Google Scholar]
  27. Valencia Alfonso, Pazos Florencio. Computational methods for the prediction of protein interactions. Curr Opin Struct Biol. 2002 Jun;12(3):368–373. doi: 10.1016/s0959-440x(02)00333-0. [DOI] [PubMed] [Google Scholar]
  28. Xenarios I., Eisenberg D. Protein interaction databases. Curr Opin Biotechnol. 2001 Aug;12(4):334–339. doi: 10.1016/s0958-1669(00)00224-x. [DOI] [PubMed] [Google Scholar]
  29. Xenarios Ioannis, Salwínski Lukasz, Duan Xiaoqun Joyce, Higney Patrick, Kim Sul-Min, Eisenberg David. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002 Jan 1;30(1):303–305. doi: 10.1093/nar/30.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ye Shui Q., Usher David C., Zhang Li Q. Gene expression profiling of human diseases by serial analysis of gene expression. J Biomed Sci. 2002 Sep-Oct;9(5):384–394. doi: 10.1007/BF02256531. [DOI] [PubMed] [Google Scholar]
  31. Zanzoni Andreas, Montecchi-Palazzi Luisa, Quondam Michele, Ausiello Gabriele, Helmer-Citterich Manuela, Cesareni Gianni. MINT: a Molecular INTeraction database. FEBS Lett. 2002 Feb 20;513(1):135–140. doi: 10.1016/s0014-5793(01)03293-8. [DOI] [PubMed] [Google Scholar]
  32. Zhang M. Q. Large-scale gene expression data analysis: a new challenge to computational biologists. Genome Res. 1999 Aug;9(8):681–688. [PubMed] [Google Scholar]
  33. Zhu H., Bilgin M., Bangham R., Hall D., Casamayor A., Bertone P., Lan N., Jansen R., Bidlingmaier S., Houfek T. Global analysis of protein activities using proteome chips. Science. 2001 Jul 26;293(5537):2101–2105. doi: 10.1126/science.1062191. [DOI] [PubMed] [Google Scholar]
  34. von Mering Christian, Huynen Martijn, Jaeggi Daniel, Schmidt Steffen, Bork Peer, Snel Berend. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003 Jan 1;31(1):258–261. doi: 10.1093/nar/gkg034. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES