Abstract
We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their ‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and direct injection electrospray mass spectrometry). The biological system used was based on a published study of Escherichia coli tryptophan mutants that had been analysed and discriminated by Yanofsky and colleagues using transcriptome analysis. Wild-type strains supplemented with tryptophan or analogues could be discriminated from controls using FT–IR of 24 h broths, as could each of the mutant strains in both minimal and supplemented media. Direct injection electrospray mass spectrometry with unit mass resolution could also be used to discriminate the strains from each other, and had the advantage that the discrimination required the use of just two or three masses in each case. These were determined via a genetic algorithm. Both methods are rapid, reagentless, reproducible and cheap, and might beneficially be extended to the analysis of gene knockout libraries.
Full Text
The Full Text of this article is available as a PDF (491.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel C. B., Lindon J. C., Noble D., Rudd B. A., Sidebottom P. J., Nicholson J. K. Characterization of metabolites in intact Streptomyces citricolor culture supernatants using high-resolution nuclear magnetic resonance and directly coupled high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy. Anal Biochem. 1999 Jun 1;270(2):220–230. doi: 10.1006/abio.1999.4093. [DOI] [PubMed] [Google Scholar]
- Akashi Hiroshi, Gojobori Takashi. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3695–3700. doi: 10.1073/pnas.062526999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen Jess, Davey Hazel M., Broadhurst David, Heald Jim K., Rowland Jem J., Oliver Stephen G., Kell Douglas B. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol. 2003 May 12;21(6):692–696. doi: 10.1038/nbt823. [DOI] [PubMed] [Google Scholar]
- Benton D. Bioinformatics--principles and potential of a new multidisciplinary tool. Trends Biotechnol. 1996 Aug;14(8):261–272. doi: 10.1016/0167-7799(96)10037-8. [DOI] [PubMed] [Google Scholar]
- Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
- Brent R. Functional genomics: learning to think about gene expression data. Curr Biol. 1999 May 6;9(9):R338–R341. doi: 10.1016/s0960-9822(99)80208-5. [DOI] [PubMed] [Google Scholar]
- Brent R. Genomic biology. Cell. 2000 Jan 7;100(1):169–183. doi: 10.1016/s0092-8674(00)81693-1. [DOI] [PubMed] [Google Scholar]
- Buchholz A., Takors R., Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem. 2001 Aug 15;295(2):129–137. doi: 10.1006/abio.2001.5183. [DOI] [PubMed] [Google Scholar]
- Burge C. B. Chipping away at the transcriptome. Nat Genet. 2001 Mar;27(3):232–234. doi: 10.1038/85772. [DOI] [PubMed] [Google Scholar]
- Champion K. M., Nishihara J. C., Joly J. C., Arnott D. Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes. Proteomics. 2001 Sep;1(9):1133–1148. doi: 10.1002/1615-9861(200109)1:9<1133::AID-PROT1133>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Clare Amanda, King Ross D. Machine learning of functional class from phenotype data. Bioinformatics. 2002 Jan;18(1):160–166. doi: 10.1093/bioinformatics/18.1.160. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A., Cárdenas M. L. From genome to cellular phenotype--a role for metabolic flux analysis? Nat Biotechnol. 2000 Mar;18(3):267–268. doi: 10.1038/73696. [DOI] [PubMed] [Google Scholar]
- Covert M. W., Schilling C. H., Famili I., Edwards J. S., Goryanin I. I., Selkov E., Palsson B. O. Metabolic modeling of microbial strains in silico. Trends Biochem Sci. 2001 Mar;26(3):179–186. doi: 10.1016/s0968-0004(00)01754-0. [DOI] [PubMed] [Google Scholar]
- Devaux F., Marc P., Jacq C. Transcriptomes, transcription activators and microarrays. FEBS Lett. 2001 Jun 8;498(2-3):140–144. doi: 10.1016/s0014-5793(01)02478-4. [DOI] [PubMed] [Google Scholar]
- Featherstone David E., Broadie Kendal. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays. 2002 Mar;24(3):267–274. doi: 10.1002/bies.10054. [DOI] [PubMed] [Google Scholar]
- Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2(3):155–168. doi: 10.1002/cfg.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiehn O., Kloska S., Altmann T. Integrated studies on plant biology using multiparallel techniques. Curr Opin Biotechnol. 2001 Feb;12(1):82–86. doi: 10.1016/s0958-1669(00)00165-8. [DOI] [PubMed] [Google Scholar]
- Fiehn O., Kopka J., Dörmann P., Altmann T., Trethewey R. N., Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000 Nov;18(11):1157–1161. doi: 10.1038/81137. [DOI] [PubMed] [Google Scholar]
- Fiehn Oliver. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol. 2002 Jan;48(1-2):155–171. [PubMed] [Google Scholar]
- Futcher B., Latter G. I., Monardo P., McLaughlin C. S., Garrels J. I. A sampling of the yeast proteome. Mol Cell Biol. 1999 Nov;19(11):7357–7368. doi: 10.1128/mcb.19.11.7357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodacre R., Shann B., Gilbert R. J., Timmins E. M., McGovern A. C., Alsberg B. K., Kell D. B., Logan N. A. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem. 2000 Jan 1;72(1):119–127. doi: 10.1021/ac990661i. [DOI] [PubMed] [Google Scholar]
- Goodacre R., Timmins E. M., Burton R., Kaderbhai N., Woodward A. M., Kell D. B., Rooney P. J. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology. 1998 May;144(Pt 5):1157–1170. doi: 10.1099/00221287-144-5-1157. [DOI] [PubMed] [Google Scholar]
- Goodacre Royston, Vaidyanathan Seetharaman, Bianchi Giorgio, Kell Douglas B. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst. 2002 Nov;127(11):1457–1462. doi: 10.1039/b206037j. [DOI] [PubMed] [Google Scholar]
- Goodacre Royston, York Emma V., Heald James K., Scott Ian M. Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry. Phytochemistry. 2003 Mar;62(6):859–863. doi: 10.1016/s0031-9422(02)00718-5. [DOI] [PubMed] [Google Scholar]
- Goryanin I., Hodgman T. C., Selkov E. Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics. 1999 Sep;15(9):749–758. doi: 10.1093/bioinformatics/15.9.749. [DOI] [PubMed] [Google Scholar]
- Hall Robert, Beale Mike, Fiehn Oliver, Hardy Nigel, Sumner Lloyd, Bino Raoul. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell. 2002 Jul;14(7):1437–1440. doi: 10.1105/tpc.140720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han M. J., Yoon S. S., Lee S. Y. Proteome analysis of metabolically engineered Escherichia coli producing Poly(3-hydroxybutyrate). J Bacteriol. 2001 Jan;183(1):301–308. doi: 10.1128/JB.183.1.301-308.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartbrich A., Schmitz G., Weuster-Botz D., de Graaf A. A., Wandrey C. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities. Biotechnol Bioeng. 1996 Sep 20;51(6):624–635. doi: 10.1002/(SICI)1097-0290(19960920)51:6<624::AID-BIT2>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Heatwole V. M., Somerville R. L. Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12. J Bacteriol. 1992 Jan;174(1):331–335. doi: 10.1128/jb.174.1.331-335.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hieter P., Boguski M. Functional genomics: it's all how you read it. Science. 1997 Oct 24;278(5338):601–602. doi: 10.1126/science.278.5338.601. [DOI] [PubMed] [Google Scholar]
- Isaacs H., Jr, Chao D., Yanofsky C., Saier M. H., Jr Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology. 1994 Aug;140(Pt 8):2125–2134. doi: 10.1099/13500872-140-8-2125. [DOI] [PubMed] [Google Scholar]
- Jürgen B., Hanschke R., Sarvas M., Hecker M., Schweder T. Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol. 2001 Apr;55(3):326–332. doi: 10.1007/s002530000531. [DOI] [PubMed] [Google Scholar]
- Kabir M. M., Shimizu K. Proteome analysis of a temperature-inducible recombinant Escherichia coli for poly-beta-hydroxybutyrate production. J Biosci Bioeng. 2001;92(3):277–284. doi: 10.1263/jbb.92.277. [DOI] [PubMed] [Google Scholar]
- Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karp P. D., Riley M., Paley S. M., Pelligrini-Toole A. EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 1996 Jan 1;24(1):32–39. doi: 10.1093/nar/24.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karp P. D., Riley M., Saier M., Paulsen I. T., Paley S. M., Pellegrini-Toole A. The EcoCyc and MetaCyc databases. Nucleic Acids Res. 2000 Jan 1;28(1):56–59. doi: 10.1093/nar/28.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karp Peter D., Riley Monica, Saier Milton, Paulsen Ian T., Collado-Vides Julio, Paley Suzanne M., Pellegrini-Toole Alida, Bonavides César, Gama-Castro Socorro. The EcoCyc Database. Nucleic Acids Res. 2002 Jan 1;30(1):56–58. doi: 10.1093/nar/30.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kell D. B., King R. D. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. Trends Biotechnol. 2000 Mar;18(3):93–98. doi: 10.1016/s0167-7799(99)01407-9. [DOI] [PubMed] [Google Scholar]
- King R. D., Karwath A., Clare A., Dehaspe L. Accurate prediction of protein functional class from sequence in the Mycobacterium tuberculosis and Escherichia coli genomes using data mining. Yeast. 2000 Dec;17(4):283–293. doi: 10.1002/1097-0061(200012)17:4<283::AID-YEA52>3.0.CO;2-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kose F., Weckwerth W., Linke T., Fiehn O. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics. 2001 Dec;17(12):1198–1208. doi: 10.1093/bioinformatics/17.12.1198. [DOI] [PubMed] [Google Scholar]
- Krishnamurthy T., Davis M. T., Stahl D. C., Lee T. D. Liquid chromatography/microspray mass spectrometry for bacterial investigations. Rapid Commun Mass Spectrom. 1999;13(1):39–49. doi: 10.1002/(SICI)1097-0231(19990115)13:1<39::AID-RCM445>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- Krämer R. Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol. 1994;162(1-2):1–13. doi: 10.1007/BF00264366. [DOI] [PubMed] [Google Scholar]
- Liang Ping, Labedan Bernard, Riley Monica. Physiological genomics of Escherichia coli protein families. Physiol Genomics. 2002;9(1):15–26. doi: 10.1152/physiolgenomics.00086.2001. [DOI] [PubMed] [Google Scholar]
- Liu X., Ng C., Ferenci T. Global adaptations resulting from high population densities in Escherichia coli cultures. J Bacteriol. 2000 Aug;182(15):4158–4164. doi: 10.1128/jb.182.15.4158-4164.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loo R. R., Cavalcoli J. D., VanBogelen R. A., Mitchell C., Loo J. A., Moldover B., Andrews P. C. Virtual 2-D gel electrophoresis: visualization and analysis of the E. coli proteome by mass spectrometry. Anal Chem. 2001 Sep 1;73(17):4063–4070. doi: 10.1021/ac0101858. [DOI] [PubMed] [Google Scholar]
- McGovern A. C., Ernill R., Kara B. V., Kell D. B., Goodacre R. Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to alpha 2-interferon production. J Biotechnol. 1999 Jul 2;72(3):157–167. doi: 10.1016/s0168-1656(99)00128-5. [DOI] [PubMed] [Google Scholar]
- McGovern Aoife C., Broadhurst David, Taylor Janet, Kaderbhai Naheed, Winson Michael K., Small David A., Rowland Jem J., Kell Douglas B., Goodacre Royston. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng. 2002 Jun 5;78(5):527–538. doi: 10.1002/bit.10226. [DOI] [PubMed] [Google Scholar]
- Mendes Pedro. Emerging bioinformatics for the metabolome. Brief Bioinform. 2002 Jun;3(2):134–145. doi: 10.1093/bib/3.2.134. [DOI] [PubMed] [Google Scholar]
- Meyer S., Noisommit-Rizzi N., Reuss M., Neubauer P. Optimized analysis of intracellular adenosine and guanosine phosphates in Escherichia coli. Anal Biochem. 1999 Jun 15;271(1):43–52. doi: 10.1006/abio.1999.4119. [DOI] [PubMed] [Google Scholar]
- Mohammed Nazimuddin, Onodera Ryoji, Khan Rokibul Islam. Tryptophan biosynthesis and production of other related compounds from indolepyruvic acid by mixed ruminal bacteria, protozoa, and their mixture in vitro. J Gen Appl Microbiol. 1999 Aug;45(4):143–147. doi: 10.2323/jgam.45.143. [DOI] [PubMed] [Google Scholar]
- Nicholson J. K., Lindon J. C., Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999 Nov;29(11):1181–1189. doi: 10.1080/004982599238047. [DOI] [PubMed] [Google Scholar]
- Oliver S. G. From DNA sequence to biological function. Nature. 1996 Feb 15;379(6566):597–600. doi: 10.1038/379597a0. [DOI] [PubMed] [Google Scholar]
- Oliver S. G., Winson M. K., Kell D. B., Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998 Sep;16(9):373–378. doi: 10.1016/s0167-7799(98)01214-1. [DOI] [PubMed] [Google Scholar]
- Oliver S. G. Yeast as a navigational aid in genome analysis. 1996 Kathleen Barton-Wright Memorial Lecture. Microbiology. 1997 May;143(Pt 5):1483–1487. doi: 10.1099/00221287-143-5-1483. [DOI] [PubMed] [Google Scholar]
- Oliver S. Guilt-by-association goes global. Nature. 2000 Feb 10;403(6770):601–603. doi: 10.1038/35001165. [DOI] [PubMed] [Google Scholar]
- Oshima Taku, Aiba Hirofumi, Masuda Yasushi, Kanaya Shigehiko, Sugiura Masahito, Wanner Barry L., Mori Hirotada, Mizuno Takeshi. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol. 2002 Oct;46(1):281–291. doi: 10.1046/j.1365-2958.2002.03170.x. [DOI] [PubMed] [Google Scholar]
- Ouzounis C. A., Karp P. D. Global properties of the metabolic map of Escherichia coli. Genome Res. 2000 Apr;10(4):568–576. doi: 10.1101/gr.10.4.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raamsdonk L. M., Teusink B., Broadhurst D., Zhang N., Hayes A., Walsh M. C., Berden J. A., Brindle K. M., Kell D. B., Rowland J. J. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol. 2001 Jan;19(1):45–50. doi: 10.1038/83496. [DOI] [PubMed] [Google Scholar]
- Rashed M. S., Bucknall M. P., Little D., Awad A., Jacob M., Alamoudi M., Alwattar M., Ozand P. T. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem. 1997 Jul;43(7):1129–1141. [PubMed] [Google Scholar]
- Riley M., Serres M. H. Interim report on genomics of Escherichia coli. Annu Rev Microbiol. 2000;54:341–411. doi: 10.1146/annurev.micro.54.1.341. [DOI] [PubMed] [Google Scholar]
- Roessner U., Luedemann A., Brust D., Fiehn O., Linke T., Willmitzer L., Fernie A. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001 Jan;13(1):11–29. doi: 10.1105/tpc.13.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilling C. H., Palsson B. O. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol. 2000 Apr 7;203(3):249–283. doi: 10.1006/jtbi.2000.1088. [DOI] [PubMed] [Google Scholar]
- Shaw A. D., Winson M. K., Woodward A. M., McGovern A. C., Davey H. M., Kaderbhai N., Broadhurst D., Gilbert R. J., Taylor J., Timmins E. M. Rapid analysis of high-dimensional bioprocesses using multivariate spectroscopies and advanced chemometrics. Adv Biochem Eng Biotechnol. 2000;66:83–113. doi: 10.1007/3-540-48773-5_3. [DOI] [PubMed] [Google Scholar]
- Skolnick J., Fetrow J. S., Kolinski A. Structural genomics and its importance for gene function analysis. Nat Biotechnol. 2000 Mar;18(3):283–287. doi: 10.1038/73723. [DOI] [PubMed] [Google Scholar]
- Smith T. F. Functional genomics--bioinformatics is ready for the challenge. Trends Genet. 1998 Jul;14(7):291–293. doi: 10.1016/s0168-9525(98)01508-x. [DOI] [PubMed] [Google Scholar]
- Tao H., Bausch C., Richmond C., Blattner F. R., Conway T. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol. 1999 Oct;181(20):6425–6440. doi: 10.1128/jb.181.20.6425-6440.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J., Goodacre R., Wade W. G., Rowland J. J., Kell D. B. The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of some Eubacterium species. FEMS Microbiol Lett. 1998 Mar 15;160(2):237–246. doi: 10.1111/j.1574-6968.1998.tb12917.x. [DOI] [PubMed] [Google Scholar]
- Taylor Janet, King Ross D., Altmann Thomas, Fiehn Oliver. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics. 2002;18 (Suppl 2):S241–S248. doi: 10.1093/bioinformatics/18.suppl_2.s241. [DOI] [PubMed] [Google Scholar]
- Thomas G. H. Completing the E. coli proteome: a database of gene products characterised since the completion of the genome sequence. Bioinformatics. 1999 Oct;15(10):860–861. doi: 10.1093/bioinformatics/15.10.860. [DOI] [PubMed] [Google Scholar]
- Timmins E. M., Howell S. A., Alsberg B. K., Noble W. C., Goodacre R. Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J Clin Microbiol. 1998 Feb;36(2):367–374. doi: 10.1128/jcm.36.2.367-374.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjaden Brian, Saxena Rini Mukherjee, Stolyar Sergey, Haynor David R., Kolker Eugene, Rosenow Carsten. Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res. 2002 Sep 1;30(17):3732–3738. doi: 10.1093/nar/gkf505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita M., Hashimoto K., Takahashi K., Shimizu T. S., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J. C. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999 Jan;15(1):72–84. doi: 10.1093/bioinformatics/15.1.72. [DOI] [PubMed] [Google Scholar]
- Tweeddale H., Notley-McRobb L., Ferenci T. Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep. 1999;4(5):237–241. doi: 10.1179/135100099101534954. [DOI] [PubMed] [Google Scholar]
- Tweeddale H., Notley-McRobb L., Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ("metabolome") analysis. J Bacteriol. 1998 Oct;180(19):5109–5116. doi: 10.1128/jb.180.19.5109-5116.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaidyanathan S., Rowland J. J., Kell D. B., Goodacre R. Discrimination of aerobic endospore-forming bacteria via electrospray-lonization mass spectrometry of whole cell suspensions. Anal Chem. 2001 Sep 1;73(17):4134–4144. doi: 10.1021/ac0103524. [DOI] [PubMed] [Google Scholar]
- Vaidyanathan Seetharaman, Kell Douglas B., Goodacre Royston. Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. J Am Soc Mass Spectrom. 2002 Feb;13(2):118–128. doi: 10.1016/S1044-0305(01)00339-7. [DOI] [PubMed] [Google Scholar]
- Wixon J., Kell D. The Kyoto encyclopedia of genes and genomes--KEGG. Yeast. 2000 Apr;17(1):48–55. doi: 10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanofsky C., Horn V. Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift. J Bacteriol. 1994 Oct;176(20):6245–6254. doi: 10.1128/jb.176.20.6245-6254.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanofsky C., Konan K. V., Sarsero J. P. Some novel transcription attenuation mechanisms used by bacteria. Biochimie. 1996;78(11-12):1017–1024. doi: 10.1016/s0300-9084(97)86725-9. [DOI] [PubMed] [Google Scholar]
- Yanofsky C. Transcription attenuation: once viewed as a novel regulatory strategy. J Bacteriol. 2000 Jan;182(1):1–8. doi: 10.1128/jb.182.1.1-8.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanofsky C., Yee M. C., Horn V. Partial revertants of tryptophan synthetase alpha chain active site mutant Asp60-->Asn. J Biol Chem. 1993 Apr 15;268(11):8213–8220. [PubMed] [Google Scholar]
- de Koning W., van Dam K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem. 1992 Jul;204(1):118–123. doi: 10.1016/0003-2697(92)90149-2. [DOI] [PubMed] [Google Scholar]
- ter Kuile B. H., Westerhoff H. V. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 2001 Jul 6;500(3):169–171. doi: 10.1016/s0014-5793(01)02613-8. [DOI] [PubMed] [Google Scholar]
- van Eijk H. M., Rooyakkers D. R., Soeters P. B., Deutz N. E. Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry. Anal Biochem. 1999 Jun 15;271(1):8–17. doi: 10.1006/abio.1999.4112. [DOI] [PubMed] [Google Scholar]