Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Apr;5(3):262–267. doi: 10.1002/cfg.404

Creating Porcine Biomedical Models Through Recombineering

Margarita M Rogatcheva 1, Laurie A Rund 1, Kelly S Swanson 1, Brandy M Marron 1, Jonathan E Beever 1, Christopher M Counter 3, Lawrence B Schook 1,2,
PMCID: PMC2447442  PMID: 18629152

Abstract

Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates) traditionally used as models as well as new candidates (pigs and cattle). In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to ‘forward genetics’, in which gene(s) responsible for a particular phenotype are identified by positional cloning (phenotype to genotype), the ‘reverse genetics’ approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype). The convergence of classical and reverse genetics, along with genomics, provides a working definition of a ‘genetic model’ organism (3). The recent construction of phenotypic maps defining quantitative trait loci (QTL) in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC) contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT) technology can provide ‘clones’ of genetically modified animals.

Full Text

The Full Text of this article is available as a PDF (242.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chowdhary B. P., Raudsepp T., Frönicke L., Scherthan H. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 1998 Jun;8(6):577–589. doi: 10.1101/gr.8.6.577. [DOI] [PubMed] [Google Scholar]
  2. Copeland N. G., Jenkins N. A., Court D. L. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet. 2001 Oct;2(10):769–779. doi: 10.1038/35093556. [DOI] [PubMed] [Google Scholar]
  3. Dow Julian T., Davies Shireen A. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev. 2003 Jul;83(3):687–729. doi: 10.1152/physrev.00035.2002. [DOI] [PubMed] [Google Scholar]
  4. Einhauer A., Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods. 2001 Oct 30;49(1-3):455–465. doi: 10.1016/s0165-022x(01)00213-5. [DOI] [PubMed] [Google Scholar]
  5. Fahrenkrug S. C., Rohrer G. A., Freking B. A., Smith T. P., Osoegawa K., Shu C. L., Catanese J. J., de Jong P. J. A porcine BAC library with tenfold genome coverage: a resource for physical and genetic map integration. Mamm Genome. 2001 Jun;12(6):472–474. doi: 10.1007/s003350020015. [DOI] [PubMed] [Google Scholar]
  6. Hawken R. J., Murtaugh J., Flickinger G. H., Yerle M., Robic A., Milan D., Gellin J., Beattie C. W., Schook L. B., Alexander L. J. A first-generation porcine whole-genome radiation hybrid map. Mamm Genome. 1999 Aug;10(8):824–830. doi: 10.1007/s003359901097. [DOI] [PubMed] [Google Scholar]
  7. Ideker T., Thorsson V., Ranish J. A., Christmas R., Buhler J., Eng J. K., Bumgarner R., Goodlett D. R., Aebersold R., Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001 May 4;292(5518):929–934. doi: 10.1126/science.292.5518.929. [DOI] [PubMed] [Google Scholar]
  8. Lee E. C., Yu D., Martinez de Velasco J., Tessarollo L., Swing D. A., Court D. L., Jenkins N. A., Copeland N. G. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001 Apr 1;73(1):56–65. doi: 10.1006/geno.2000.6451. [DOI] [PubMed] [Google Scholar]
  9. Montigny William J., Phelps Stephanie F., Illenye Sharon, Heintz Nicholas H. Parameters influencing high-efficiency transfection of bacterial artificial chromosomes into cultured mammalian cells. Biotechniques. 2003 Oct;35(4):796–807. doi: 10.2144/03354rr02. [DOI] [PubMed] [Google Scholar]
  10. Muyrers J. P., Zhang Y., Benes V., Testa G., Ansorge W., Stewart A. F. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep. 2000 Sep;1(3):239–243. doi: 10.1093/embo-reports/kvd049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paszek A. A., Wilkie P. J., Flickinger G. H., Rohrer G. A., Alexander L. J., Beattie C. W., Schook L. B. Interval mapping of growth in divergent swine cross. Mamm Genome. 1999 Feb;10(2):117–122. doi: 10.1007/s003359900955. [DOI] [PubMed] [Google Scholar]
  12. Rettenberger G., Klett C., Zechner U., Kunz J., Vogel W., Hameister H. Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics. 1995 Mar 20;26(2):372–378. doi: 10.1016/0888-7543(95)80222-8. [DOI] [PubMed] [Google Scholar]
  13. Rogel-Gaillard C., Bourgeaux N., Billault A., Vaiman M., Chardon P. Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements. Cytogenet Cell Genet. 1999;85(3-4):205–211. doi: 10.1159/000015294. [DOI] [PubMed] [Google Scholar]
  14. Rohrer G. A., Alexander L. J., Hu Z., Smith T. P., Keele J. W., Beattie C. W. A comprehensive map of the porcine genome. Genome Res. 1996 May;6(5):371–391. doi: 10.1101/gr.6.5.371. [DOI] [PubMed] [Google Scholar]
  15. Swaminathan S., Ellis H. M., Waters L. S., Yu D., Lee E. C., Court D. L., Sharan S. K. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis. 2001 Jan;29(1):14–21. doi: 10.1002/1526-968x(200101)29:1<14::aid-gene1001>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  16. Wiley E. H. Statistics, Etiology and Pathology. Cal State J Med. 1907 Oct;5(10):262–264. [PMC free article] [PubMed] [Google Scholar]
  17. Yerle M., Echard G., Robic A., Mairal A., Dubut-Fontana C., Riquet J., Pinton P., Milan D., Lahbib-Mansais Y., Gellin J. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet Cell Genet. 1996;73(3):194–202. doi: 10.1159/000134338. [DOI] [PubMed] [Google Scholar]
  18. Zhang Y., Buchholz F., Muyrers J. P., Stewart A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998 Oct;20(2):123–128. doi: 10.1038/2417. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES