Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Apr;5(3):230–238. doi: 10.1002/cfg.398

Antarctic Genomics

Melody S Clark 1,, Andrew Clarke 1, Charles S Cockell 1, Peter Convey 1, H William Detrich III 2, Keiron P P Fraser 1, Ian A Johnston 3, Barbara A Methe 4, Alison E Murray 5, Lloyd S Peck 1, Karin Römisch 6, Alex D Rogers 1
PMCID: PMC2447445  PMID: 18629155

Abstract

With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies.

Full Text

The Full Text of this article is available as a PDF (199.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Béjà Oded, Koonin Eugene V., Aravind L., Taylor Lance T., Seitz Heidi, Stein Jefferey L., Bensen Daniel C., Feldman Robert A., Swanson Ronald V., DeLong Edward F. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol. 2002 Jan;68(1):335–345. doi: 10.1128/AEM.68.1.335-345.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng C. H., Chen L. Evolution of an antifreeze glycoprotein. Nature. 1999 Sep 30;401(6752):443–444. doi: 10.1038/46721. [DOI] [PubMed] [Google Scholar]
  4. Cohen F. E., Prusiner S. B. Pathologic conformations of prion proteins. Annu Rev Biochem. 1998;67:793–819. doi: 10.1146/annurev.biochem.67.1.793. [DOI] [PubMed] [Google Scholar]
  5. Diamond J. Ecology. Dammed experiments! Science. 2001 Nov 30;294(5548):1847–1848. doi: 10.1126/science.1067012. [DOI] [PubMed] [Google Scholar]
  6. Dillon Jesse G., Tatsumi Cecelia M., Tandingan Patrick G., Castenholz Richard W. Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol. 2002 Jan 31;177(4):322–331. doi: 10.1007/s00203-001-0395-x. [DOI] [PubMed] [Google Scholar]
  7. Feller Georges, Gerday Charles. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol. 2003 Dec;1(3):200–208. doi: 10.1038/nrmicro773. [DOI] [PubMed] [Google Scholar]
  8. Fields Peter A., Kim Yong-Sung, Carpenter John F., Somero George N. Temperature adaptation in Gillichthys (Teleost: Gobiidae) A(4)-lactate dehydrogenases: identical primary structures produce subtly different conformations. J Exp Biol. 2002 May;205(Pt 9):1293–1303. doi: 10.1242/jeb.205.9.1293. [DOI] [PubMed] [Google Scholar]
  9. Hofmann G. E., Buckley B. A., Airaksinen S., Keen J. E., Somero G. N. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol. 2000 Aug;203(Pt 15):2331–2339. doi: 10.1242/jeb.203.15.2331. [DOI] [PubMed] [Google Scholar]
  10. Huston A. L., Krieger-Brockett B. B., Deming J. W. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol. 2000 Aug;2(4):383–388. doi: 10.1046/j.1462-2920.2000.00118.x. [DOI] [PubMed] [Google Scholar]
  11. Johnston Ian A., Fernández Daniel A., Calvo Jorge, Vieira Vera L. A., North Anthony W., Abercromby Marguerite, Garland Theodore., Jr Reduction in muscle fibre number during the adaptive radiation of notothenioid fishes: a phylogenetic perspective. J Exp Biol. 2003 Aug;206(Pt 15):2595–2609. doi: 10.1242/jeb.00474. [DOI] [PubMed] [Google Scholar]
  12. Moylan T. J., Sidell B. D. Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol. 2000 Apr;203(Pt 8):1277–1286. doi: 10.1242/jeb.203.8.1277. [DOI] [PubMed] [Google Scholar]
  13. Near Thomas J., Pesavento James J., Cheng Chi Hing C. Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Mol Phylogenet Evol. 2003 Jul;28(1):87–98. doi: 10.1016/s1055-7903(03)00029-0. [DOI] [PubMed] [Google Scholar]
  14. Pearce D. A. Bacterioplankton community structure in a maritime antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Microb Ecol. 2003 May 13;46(1):92–105. doi: 10.1007/s00248-002-2039-3. [DOI] [PubMed] [Google Scholar]
  15. Pörtner H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Mol Integr Physiol. 2002 Aug;132(4):739–761. doi: 10.1016/s1095-6433(02)00045-4. [DOI] [PubMed] [Google Scholar]
  16. Quayle Wendy C., Peck Lloyd S., Peat Helen, Ellis-Evans J. C., Harrigan P. Richard. Extreme responses to climate change in Antarctic lakes. Science. 2002 Jan 25;295(5555):645–645. doi: 10.1126/science.1064074. [DOI] [PubMed] [Google Scholar]
  17. Römisch Karin, Collie Nicola, Soto Nelyn, Logue James, Lindsay Margaret, Scheper Wiep, Cheng Chi-Hing C. Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci. 2003 May 27;116(Pt 14):2875–2883. doi: 10.1242/jcs.00597. [DOI] [PubMed] [Google Scholar]
  18. Saunders Neil F. W., Thomas Torsten, Curmi Paul M. G., Mattick John S., Kuczek Elizabeth, Slade Rob, Davis John, Franzmann Peter D., Boone David, Rusterholtz Karl. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 2003 Jun 12;13(7):1580–1588. doi: 10.1101/gr.1180903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. di Prisco Guido, Cocca Ennio, Parker Sandra, Detrich H. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene. 2002 Aug 7;295(2):185–191. doi: 10.1016/s0378-1119(02)00691-1. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES