Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2004 Apr;5(3):216–224. doi: 10.1002/cfg.391

Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

Chandra L Tucker 1, Stanley Fields 1,2,3,
PMCID: PMC2447451  PMID: 18629161

Abstract

Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999). Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.

Full Text

The Full Text of this article is available as a PDF (166.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begley Thomas J., Rosenbach Ari S., Ideker Trey, Samson Leona D. Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res. 2002 Dec;1(2):103–112. [PubMed] [Google Scholar]
  2. Bennett C. B., Lewis L. K., Karthikeyan G., Lobachev K. S., Jin Y. H., Sterling J. F., Snipe J. R., Resnick M. A. Genes required for ionizing radiation resistance in yeast. Nat Genet. 2001 Dec;29(4):426–434. doi: 10.1038/ng778. [DOI] [PubMed] [Google Scholar]
  3. Biteau Benoît, Labarre Jean, Toledano Michel B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003 Oct 30;425(6961):980–984. doi: 10.1038/nature02075. [DOI] [PubMed] [Google Scholar]
  4. Blackburn Alexandra S., Avery Simon V. Genome-wide screening of Saccharomyces cerevisiae to identify genes required for antibiotic insusceptibility of eukaryotes. Antimicrob Agents Chemother. 2003 Feb;47(2):676–681. doi: 10.1128/AAC.47.2.676-681.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Causton H. C., Ren B., Koh S. S., Harbison C. T., Kanin E., Jennings E. G., Lee T. I., True H. L., Lander E. S., Young R. A. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001 Feb;12(2):323–337. doi: 10.1091/mbc.12.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delling U., Raymond M., Schurr E. Identification of Saccharomyces cerevisiae genes conferring resistance to quinoline ring-containing antimalarial drugs. Antimicrob Agents Chemother. 1998 May;42(5):1034–1041. doi: 10.1128/aac.42.5.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fleming James A., Lightcap Eric S., Sadis Seth, Thoroddsen Vala, Bulawa Christine E., Blackman Ronald K. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1461–1466. doi: 10.1073/pnas.032516399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giaever Guri, Chu Angela M., Ni Li, Connelly Carla, Riles Linda, Véronneau Steeve, Dow Sally, Lucau-Danila Ankuta, Anderson Keith, André Bruno. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002 Jul 25;418(6896):387–391. doi: 10.1038/nature00935. [DOI] [PubMed] [Google Scholar]
  9. Grant C. M., MacIver F. H., Dawes I. W. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 1997 Jun 30;410(2-3):219–222. doi: 10.1016/s0014-5793(97)00592-9. [DOI] [PubMed] [Google Scholar]
  10. Heitman J., Koller A., Kunz J., Henriquez R., Schmidt A., Movva N. R., Hall M. N. The immunosuppressant FK506 inhibits amino acid import in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Aug;13(8):5010–5019. doi: 10.1128/mcb.13.8.5010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higgins Vincent J., Alic Nazif, Thorpe Geoffrey W., Breitenbach Michael, Larsson Veronica, Dawes Ian W. Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast. 2002 Feb;19(3):203–214. doi: 10.1002/yea.811. [DOI] [PubMed] [Google Scholar]
  12. Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., Slade D., Burchard J., Dow S., Ward T. R., Kidd M. J. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet. 2000 Jul;25(3):333–337. doi: 10.1038/77116. [DOI] [PubMed] [Google Scholar]
  13. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001 Mar 13;98(8):4569–4574. doi: 10.1073/pnas.061034498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jamieson D. J. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol. 1992 Oct;174(20):6678–6681. doi: 10.1128/jb.174.20.6678-6681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Juhnke H., Krems B., Kötter P., Entian K. D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet. 1996 Sep 25;252(4):456–464. doi: 10.1007/BF02173011. [DOI] [PubMed] [Google Scholar]
  16. Kumar Anuj, Agarwal Seema, Heyman John A., Matson Sandra, Heidtman Matthew, Piccirillo Stacy, Umansky Lara, Drawid Amar, Jansen Ronald, Liu Yang. Subcellular localization of the yeast proteome. Genes Dev. 2002 Mar 15;16(6):707–719. doi: 10.1101/gad.970902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lemmon S. K., Traub L. M. Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol. 2000 Aug;12(4):457–466. doi: 10.1016/s0955-0674(00)00117-4. [DOI] [PubMed] [Google Scholar]
  18. Palmer Laura K., Wolfe Darren, Keeley Jessica L., Keil Ralph L. Volatile anesthetics affect nutrient availability in yeast. Genetics. 2002 Jun;161(2):563–574. doi: 10.1093/genetics/161.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pina-Vaz C., Sansonetty F., Rodrigues A. G., Martinez-De-Oliveira J., Fonseca A. F., Mårdh P. A. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J Med Microbiol. 2000 Sep;49(9):831–840. doi: 10.1099/0022-1317-49-9-831. [DOI] [PubMed] [Google Scholar]
  20. Salzberg Steven L. Genomics: Yeast rises again. Nature. 2003 May 15;423(6937):233–234. doi: 10.1038/423233a. [DOI] [PubMed] [Google Scholar]
  21. Steinmetz Lars M., Scharfe Curt, Deutschbauer Adam M., Mokranjac Dejana, Herman Zelek S., Jones Ted, Chu Angela M., Giaever Guri, Prokisch Holger, Oefner Peter J. Systematic screen for human disease genes in yeast. Nat Genet. 2002 Jul 22;31(4):400–404. doi: 10.1038/ng929. [DOI] [PubMed] [Google Scholar]
  22. Uetz P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000 Feb 10;403(6770):623–627. doi: 10.1038/35001009. [DOI] [PubMed] [Google Scholar]
  23. Watanabe Y., Irie K., Matsumoto K. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol. 1995 Oct;15(10):5740–5749. doi: 10.1128/mcb.15.10.5740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. doi: 10.1126/science.285.5429.901. [DOI] [PubMed] [Google Scholar]
  25. Zewail Amani, Xie Michael W., Xing Yi, Lin Lan, Zhang P. Fred, Zou Wei, Saxe Jonathan P., Huang Jing. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc Natl Acad Sci U S A. 2003 Mar 3;100(6):3345–3350. doi: 10.1073/pnas.0530118100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES