Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2005 Jun;6(4):204–216. doi: 10.1002/cfg.473

The Cadherin Superfamily in Anopheles gambiae: a Comparative Study With Drosophila melanogaster

Catarina Moita 1,, Sérgio Simões 1,3, Luís F Moita 2, António Jacinto 1,3, Pedro Fernandes 1
PMCID: PMC2447487  PMID: 18629193

Abstract

The cadherin superfamily is a diverse and multifunctional group of proteins with extensive representation across genomes of phylogenetically distant species that is involved in cell–cell communication and adhesion. The mosquito Anopheles gambiae is an emerging model organism for the study of innate immunity and host–pathogen interactions, where the malaria parasite induces a profound rearrangement of the actin cytoskeleton at critical stages of infection. We have used bioinformatics tools to retrieve present sequence knowledge about the complete repertoire of cadherins in A. gambiae and compared it to that of the fruit fly, Drosophila melanogaster. In A. gambiae, we have identified 43 genes coding for cadherin extracellular domains that were re-annotated to 38 genes and represent an expansion of this gene family in comparison to other invertebrate organisms. The majority of Drosophila cadherins show a 1 : 1 Anopheles orthologue, but we have observed a remarkable expansion in some groups in A. gambiae, such as N-cadherins, that were recently shown to have a role in the olfactory system of the fruit fly. In vivo dsRNA silencing of overrepresented genes in A. gambiae and other genes showing expression at critical tissues for parasite infection will likely advance our understanding of the problems of host preference and host–pathogen interactions in this mosquito species.

Full Text

The Full Text of this article is available as a PDF (412.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal N., Joshi S., Kango M., Saha D., Mishra A., Sinha P. Epithelial hyperplasia of imaginal discs induced by mutations in Drosophila tumor suppressor genes: growth and pattern formation in genetic mosaics. Dev Biol. 1995 Jun;169(2):387–398. doi: 10.1006/dbio.1995.1155. [DOI] [PubMed] [Google Scholar]
  2. Andreeva Antonina, Howorth Dave, Brenner Steven E., Hubbard Tim J. P., Chothia Cyrus, Murzin Alexey G. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 2004 Jan 1;32(DATABASE):D226–D229. doi: 10.1093/nar/gkh039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Angst B. D., Marcozzi C., Magee A. I. The cadherin superfamily: diversity in form and function. J Cell Sci. 2001 Feb;114(Pt 4):629–641. doi: 10.1242/jcs.114.4.629. [DOI] [PubMed] [Google Scholar]
  4. Apweiler Rolf, Bairoch Amos, Wu Cathy H., Barker Winona C., Boeckmann Brigitte, Ferro Serenella, Gasteiger Elisabeth, Huang Hongzhan, Lopez Rodrigo, Magrane Michele. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004 Jan 1;32(DATABASE):D115–D119. doi: 10.1093/nar/gkh131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bendtsen Jannick Dyrløv, Nielsen Henrik, von Heijne Gunnar, Brunak Søren. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004 Jul 16;340(4):783–795. doi: 10.1016/j.jmb.2004.05.028. [DOI] [PubMed] [Google Scholar]
  6. Blaschuk O. W., Sullivan R., David S., Pouliot Y. Identification of a cadherin cell adhesion recognition sequence. Dev Biol. 1990 May;139(1):227–229. doi: 10.1016/0012-1606(90)90290-y. [DOI] [PubMed] [Google Scholar]
  7. Bryant P. J., Watson K. L., Justice R. W., Woods D. F. Tumor suppressor genes encoding proteins required for cell interactions and signal transduction in Drosophila. Dev Suppl. 1993:239–249. [PubMed] [Google Scholar]
  8. Casal José, Struhl Gary, Lawrence Peter A. Developmental compartments and planar polarity in Drosophila. Curr Biol. 2002 Jul 23;12(14):1189–1198. doi: 10.1016/s0960-9822(02)00974-0. [DOI] [PubMed] [Google Scholar]
  9. Chae J., Kim M. J., Goo J. H., Collier S., Gubb D., Charlton J., Adler P. N., Park W. J. The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. Development. 1999 Dec;126(23):5421–5429. doi: 10.1242/dev.126.23.5421. [DOI] [PubMed] [Google Scholar]
  10. Christophides George K., Zdobnov Evgeny, Barillas-Mury Carolina, Birney Ewan, Blandin Stephanie, Blass Claudia, Brey Paul T., Collins Frank H., Danielli Alberto, Dimopoulos George. Immunity-related genes and gene families in Anopheles gambiae. Science. 2002 Oct 4;298(5591):159–165. doi: 10.1126/science.1077136. [DOI] [PubMed] [Google Scholar]
  11. Clark H. F., Brentrup D., Schneitz K., Bieber A., Goodman C., Noll M. Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Genes Dev. 1995 Jun 15;9(12):1530–1542. doi: 10.1101/gad.9.12.1530. [DOI] [PubMed] [Google Scholar]
  12. Curtin John A., Quint Elizabeth, Tsipouri Vicky, Arkell Ruth M., Cattanach Bruce, Copp Andrew J., Henderson Deborah J., Spurr Nigel, Stanier Philip, Fisher Elizabeth M. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol. 2003 Jul 1;13(13):1129–1133. doi: 10.1016/s0960-9822(03)00374-9. [DOI] [PubMed] [Google Scholar]
  13. Eaton Suzanne. Cell biology of planar polarity transmission in the Drosophila wing. Mech Dev. 2003 Nov;120(11):1257–1264. doi: 10.1016/j.mod.2003.07.002. [DOI] [PubMed] [Google Scholar]
  14. Fanto Manolis, Clayton Lesley, Meredith Jamie, Hardiman Kirsten, Charroux Bernard, Kerridge Stephen, McNeill Helen. The tumor-suppressor and cell adhesion molecule Fat controls planar polarity via physical interactions with Atrophin, a transcriptional co-repressor. Development. 2003 Feb;130(4):763–774. doi: 10.1242/dev.00304. [DOI] [PubMed] [Google Scholar]
  15. Florea L., Hartzell G., Zhang Z., Rubin G. M., Miller W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res. 1998 Sep;8(9):967–974. doi: 10.1101/gr.8.9.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frank Marcus, Kemler Rolf. Protocadherins. Curr Opin Cell Biol. 2002 Oct;14(5):557–562. doi: 10.1016/s0955-0674(02)00365-4. [DOI] [PubMed] [Google Scholar]
  17. Garoia F., Guerra D., Pezzoli M. C., López-Varea A., Cavicchi S., García-Bellido A. Cell behaviour of Drosophila fat cadherin mutations in wing development. Mech Dev. 2000 Jun;94(1-2):95–109. doi: 10.1016/s0925-4773(00)00306-3. [DOI] [PubMed] [Google Scholar]
  18. Godt D., Tepass U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature. 1998 Sep 24;395(6700):387–391. doi: 10.1038/26493. [DOI] [PubMed] [Google Scholar]
  19. Gough J., Karplus K., Hughey R., Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001 Nov 2;313(4):903–919. doi: 10.1006/jmbi.2001.5080. [DOI] [PubMed] [Google Scholar]
  20. Haag T. A., Haag N. P., Lekven A. C., Hartenstein V. The role of cell adhesion molecules in Drosophila heart morphogenesis: faint sausage, shotgun/DE-cadherin, and laminin A are required for discrete stages in heart development. Dev Biol. 1999 Apr 1;208(1):56–69. doi: 10.1006/dbio.1998.9188. [DOI] [PubMed] [Google Scholar]
  21. Hallem Elissa A., Nicole Fox A., Zwiebel Laurence J., Carlson John R. Olfaction: mosquito receptor for human-sweat odorant. Nature. 2004 Jan 15;427(6971):212–213. doi: 10.1038/427212a. [DOI] [PubMed] [Google Scholar]
  22. Hill E., Broadbent I. D., Chothia C., Pettitt J. Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster. J Mol Biol. 2001 Feb 2;305(5):1011–1024. doi: 10.1006/jmbi.2000.4361. [DOI] [PubMed] [Google Scholar]
  23. Holt Robert A., Subramanian G. Mani, Halpern Aaron, Sutton Granger G., Charlab Rosane, Nusskern Deborah R., Wincker Patrick, Clark Andrew G., Ribeiro José M. C., Wides Ron. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129–149. doi: 10.1126/science.1076181. [DOI] [PubMed] [Google Scholar]
  24. Hummel Thomas, Zipursky S. Lawrence. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron. 2004 Apr 8;42(1):77–88. doi: 10.1016/s0896-6273(04)00158-8. [DOI] [PubMed] [Google Scholar]
  25. Iwai Y., Usui T., Hirano S., Steward R., Takeichi M., Uemura T. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron. 1997 Jul;19(1):77–89. doi: 10.1016/s0896-6273(00)80349-9. [DOI] [PubMed] [Google Scholar]
  26. King I. A., Angst B. D., Hunt D. M., Kruger M., Arnemann J., Buxton R. S. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation. 1997 Nov;62(2):83–96. doi: 10.1046/j.1432-0436.1997.6220083.x. [DOI] [PubMed] [Google Scholar]
  27. Kovacs Eva M., Ali Radiya G., McCormack Ailsa J., Yap Alpha S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem. 2001 Dec 13;277(8):6708–6718. doi: 10.1074/jbc.M109640200. [DOI] [PubMed] [Google Scholar]
  28. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001 Jan 19;305(3):567–580. doi: 10.1006/jmbi.2000.4315. [DOI] [PubMed] [Google Scholar]
  29. Lee C. H., Herman T., Clandinin T. R., Lee R., Zipursky S. L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron. 2001 May;30(2):437–450. doi: 10.1016/s0896-6273(01)00291-4. [DOI] [PubMed] [Google Scholar]
  30. Lee Roger C., Clandinin Thomas R., Lee Chi-Hon, Chen Pei-Ling, Meinertzhagen Ian A., Zipursky S. Lawrence. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat Neurosci. 2003 Jun;6(6):557–563. doi: 10.1038/nn1063. [DOI] [PubMed] [Google Scholar]
  31. Letunic Ivica, Goodstadt Leo, Dickens Nicholas J., Doerks Tobias, Schultz Joerg, Mott Richard, Ciccarelli Francesca, Copley Richard R., Ponting Chris P., Bork Peer. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 2002 Jan 1;30(1):242–244. doi: 10.1093/nar/30.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Madera Martin, Vogel Christine, Kummerfeld Sarah K., Chothia Cyrus, Gough Julian. The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 2004 Jan 1;32(DATABASE):D235–D239. doi: 10.1093/nar/gkh117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mongin Emmanuel, Louis Christos, Holt Robert A., Birney Ewan, Collins Frank H. The Anopheles gambiae genome: an update. Trends Parasitol. 2004 Feb;20(2):49–52. doi: 10.1016/j.pt.2003.11.003. [DOI] [PubMed] [Google Scholar]
  34. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  35. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nielsen H., Brunak S., von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 1999 Jan;12(1):3–9. doi: 10.1093/protein/12.1.3. [DOI] [PubMed] [Google Scholar]
  37. Niessen Carien M., Gumbiner Barry M. Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J Cell Biol. 2002 Jan 14;156(2):389–399. doi: 10.1083/jcb.200108040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nollet F., Kools P., van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000 Jun 9;299(3):551–572. doi: 10.1006/jmbi.2000.3777. [DOI] [PubMed] [Google Scholar]
  39. Nose A., Nagafuchi A., Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell. 1988 Sep 23;54(7):993–1001. doi: 10.1016/0092-8674(88)90114-6. [DOI] [PubMed] [Google Scholar]
  40. Oda H., Tsukita S. Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev Biol. 1999 Dec 1;216(1):406–422. doi: 10.1006/dbio.1999.9494. [DOI] [PubMed] [Google Scholar]
  41. Oda H., Uemura T., Harada Y., Iwai Y., Takeichi M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Dev Biol. 1994 Oct;165(2):716–726. doi: 10.1006/dbio.1994.1287. [DOI] [PubMed] [Google Scholar]
  42. Oda H., Uemura T., Takeichi M. Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes Cells. 1997 Jan;2(1):29–40. doi: 10.1046/j.1365-2443.1997.d01-284.x. [DOI] [PubMed] [Google Scholar]
  43. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Perl A. K., Wilgenbus P., Dahl U., Semb H., Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998 Mar 12;392(6672):190–193. doi: 10.1038/32433. [DOI] [PubMed] [Google Scholar]
  45. Rawls Amy S., Guinto Jake B., Wolff Tanya. The cadherins fat and dachsous regulate dorsal/ventral signaling in the Drosophila eye. Curr Biol. 2002 Jun 25;12(12):1021–1026. doi: 10.1016/s0960-9822(02)00893-x. [DOI] [PubMed] [Google Scholar]
  46. Redies C. Cadherins in the central nervous system. Prog Neurobiol. 2000 Aug;61(6):611–648. doi: 10.1016/s0301-0082(99)00070-2. [DOI] [PubMed] [Google Scholar]
  47. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Semb H., Christofori G. The tumor-suppressor function of E-cadherin. Am J Hum Genet. 1998 Dec;63(6):1588–1593. doi: 10.1086/302173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Senti Kirsten-André, Usui Tadao, Boucke Karin, Greber Urs, Uemura Tadashi, Dickson Barry J. Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr Biol. 2003 May 13;13(10):828–832. doi: 10.1016/s0960-9822(03)00291-4. [DOI] [PubMed] [Google Scholar]
  50. Shapiro L., Colman D. R. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron. 1999 Jul;23(3):427–430. doi: 10.1016/s0896-6273(00)80796-5. [DOI] [PubMed] [Google Scholar]
  51. Sweeney Neal T., Li Wenjun, Gao Fen-Biao. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis. Dev Biol. 2002 Jul 1;247(1):76–88. doi: 10.1006/dbio.2002.0702. [DOI] [PubMed] [Google Scholar]
  52. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem. 1990;59:237–252. doi: 10.1146/annurev.bi.59.070190.001321. [DOI] [PubMed] [Google Scholar]
  53. Takeichi M., Hatta K., Nose A., Nagafuchi A. Identification of a gene family of cadherin cell adhesion molecules. Cell Differ Dev. 1988 Nov;25 (Suppl):91–94. doi: 10.1016/0922-3371(88)90104-9. [DOI] [PubMed] [Google Scholar]
  54. Tanihara H., Sano K., Heimark R. L., St John T., Suzuki S. Cloning of five human cadherins clarifies characteristic features of cadherin extracellular domain and provides further evidence for two structurally different types of cadherin. Cell Adhes Commun. 1994 Apr;2(1):15–26. doi: 10.3109/15419069409014199. [DOI] [PubMed] [Google Scholar]
  55. Tepass U., Gruszynski-DeFeo E., Haag T. A., Omatyar L., Török T., Hartenstein V. shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev. 1996 Mar 15;10(6):672–685. doi: 10.1101/gad.10.6.672. [DOI] [PubMed] [Google Scholar]
  56. Tepass U., Truong K., Godt D., Ikura M., Peifer M. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol. 2000 Nov;1(2):91–100. doi: 10.1038/35040042. [DOI] [PubMed] [Google Scholar]
  57. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Togashi Hideru, Abe Kentaro, Mizoguchi Akira, Takaoka Kanna, Chisaka Osamu, Takeichi Masatoshi. Cadherin regulates dendritic spine morphogenesis. Neuron. 2002 Jul 3;35(1):77–89. doi: 10.1016/s0896-6273(02)00748-1. [DOI] [PubMed] [Google Scholar]
  59. Usui T., Shima Y., Shimada Y., Hirano S., Burgess R. W., Schwarz T. L., Takeichi M., Uemura T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell. 1999 Sep 3;98(5):585–595. doi: 10.1016/s0092-8674(00)80046-x. [DOI] [PubMed] [Google Scholar]
  60. Vogt L., Schrimpf S. P., Meskenaite V., Frischknecht R., Kinter J., Leone D. P., Ziegler U., Sonderegger P. Calsyntenin-1, a proteolytically processed postsynaptic membrane protein with a cytoplasmic calcium-binding domain. Mol Cell Neurosci. 2001 Jan;17(1):151–166. doi: 10.1006/mcne.2000.0937. [DOI] [PubMed] [Google Scholar]
  61. Yagi T., Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 2000 May 15;14(10):1169–1180. [PubMed] [Google Scholar]
  62. Zdobnov E. M., Apweiler R. InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001 Sep;17(9):847–848. doi: 10.1093/bioinformatics/17.9.847. [DOI] [PubMed] [Google Scholar]
  63. Zdobnov Evgeny M., von Mering Christian, Letunic Ivica, Torrents David, Suyama Mikita, Copley Richard R., Christophides George K., Thomasova Dana, Holt Robert A., Subramanian G. Mani. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science. 2002 Oct 4;298(5591):149–159. doi: 10.1126/science.1077061. [DOI] [PubMed] [Google Scholar]
  64. Zhu Haitao, Luo Liqun. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron. 2004 Apr 8;42(1):63–75. doi: 10.1016/s0896-6273(04)00142-4. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES