Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2005 Jul-Aug;6(5-6):277–300. doi: 10.1002/cfg.482

Identification and Comparative Analysis of the Peptidyl-Prolyl cis/trans Isomerase Repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz. pombe

Trevor J Pemberton 1,2,, John E Kay 1
PMCID: PMC2447506  PMID: 18629211

Abstract

The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins comprises three member families that are found throughout nature and are present in all the major compartments of the cell. Their numbers appear to be linked to the number of genes in their respective genomes, although we have found the human repertoire to be smaller than expected due to a reduced cyclophilin repertoire. We show here that whilst the members of the cyclophilin family (which are predominantly found in the nucleus and cytoplasm) and the parvulin family (which are predominantly nuclear) are largely conserved between different repertoires, the FKBPs (which are predominantly found in the cytoplasm and endoplasmic reticulum) are not. It therefore appears that the cyclophilins and parvulins have evolved to perform conserved functions, while the FKBPs have evolved to fill ever-changing niches within the constantly evolving organisms. Many orthologous subgroups within the different PPIase families appear to have evolved from a distinct common ancestor, whereas others, such as the mitochondrial cyclophilins, appear to have evolved independently of one another. We have also identified a novel parvulin within Drosophila melanogaster that is unique to the fruit fly, indicating a recent evolutionary emergence. Interestingly, the fission yeast repertoire, which contains no unique cyclophilins and parvulins, shares no PPIases solely with the budding yeast but it does share a majority with the higher eukaryotes in this study, unlike the budding yeast. It therefore appears that, in comparison with Schizosaccharomyces pombe, Saccharomyces cerevisiae is a poor representation of the higher eukaryotes for the study of PPIases.

Full Text

The Full Text of this article is available as a PDF (423.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Adrain Colin, Creagh Emma M., Martin Seamus J. Defying death: showing Bcl-2 the way home. Nat Cell Biol. 2003 Jan;5(1):9–11. doi: 10.1038/ncb0103-9a. [DOI] [PubMed] [Google Scholar]
  3. Ahn J., Murphy M., Kratowicz S., Wang A., Levine A. J., George D. L. Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene. 1999 Oct 21;18(43):5954–5958. doi: 10.1038/sj.onc.1202986. [DOI] [PubMed] [Google Scholar]
  4. Albert A., Lavoie S., Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J Cell Sci. 1999 Aug;112(Pt 15):2493–2500. doi: 10.1242/jcs.112.15.2493. [DOI] [PubMed] [Google Scholar]
  5. Alkhatib G., Murata K., Roder J. C. Cellular distribution of a natural killer cell tumour recognition-related surface antigen in purified human lymphocytes. Immunology. 1997 Oct;92(2):173–179. doi: 10.1046/j.1365-2567.1997.00332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  7. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Anderson Melanie, Fair Keri, Amero Sally, Nelson Stephanie, Harte Peter J., Diaz Manuel O. A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells. Dev Genes Evol. 2002 Mar 6;212(3):107–113. doi: 10.1007/s00427-002-0213-8. [DOI] [PubMed] [Google Scholar]
  9. Anderson S. K., Gallinger S., Roder J., Frey J., Young H. A., Ortaldo J. R. A cyclophilin-related protein involved in the function of natural killer cells. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):542–546. doi: 10.1073/pnas.90.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ansari Husam, Greco Giampaolo, Luban Jeremy. Cyclophilin A peptidyl-prolyl isomerase activity promotes ZPR1 nuclear export. Mol Cell Biol. 2002 Oct;22(20):6993–7003. doi: 10.1128/MCB.22.20.6993-7003.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Arévalo-Rodríguez M., Cardenas M. E., Wu X., Hanes S. D., Heitman J. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J. 2000 Jul 17;19(14):3739–3749. doi: 10.1093/emboj/19.14.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Arévalo-Rodríguez Miguel, Heitman Joseph. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryot Cell. 2005 Jan;4(1):17–29. doi: 10.1128/EC.4.1.17-29.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Baines Christopher P., Kaiser Robert A., Purcell Nicole H., Blair N. Scott, Osinska Hanna, Hambleton Michael A., Brunskill Eric W., Sayen M. Richard, Gottlieb Roberta A., Dorn Gerald W. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005 Mar 31;434(7033):658–662. doi: 10.1038/nature03434. [DOI] [PubMed] [Google Scholar]
  14. Baker E. K., Colley N. J., Zuker C. S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 1994 Oct 17;13(20):4886–4895. doi: 10.1002/j.1460-2075.1994.tb06816.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Basu Aruna, Das Madhusudan, Qanungo Suparna, Fan Xue-Jun, DuBois Garrett, Haldar Subrata. Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation. Neoplasia. 2002 May-Jun;4(3):218–227. doi: 10.1038/sj.neo.7900233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Benton B. M., Zang J. H., Thorner J. A novel FK506- and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus. J Cell Biol. 1994 Nov;127(3):623–639. doi: 10.1083/jcb.127.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bharadwaj S., Ali A., Ovsenek N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol. 1999 Dec;19(12):8033–8041. doi: 10.1128/mcb.19.12.8033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Birnby D. A., Link E. M., Vowels J. J., Tian H., Colacurcio P. L., Thomas J. H. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics. 2000 May;155(1):85–104. doi: 10.1093/genetics/155.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Birney E., Kumar S., Krainer A. R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 1993 Dec 25;21(25):5803–5816. doi: 10.1093/nar/21.25.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bose S., Mücke M., Freedman R. B. The characterization of a cyclophilin-type peptidyl prolyl cis-trans-isomerase from the endoplasmic-reticulum lumen. Biochem J. 1994 Jun 15;300(Pt 3):871–875. doi: 10.1042/bj3000871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bourquin J. P., Stagljar I., Meier P., Moosmann P., Silke J., Baechi T., Georgiev O., Schaffner W. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Res. 1997 Jun 1;25(11):2055–2061. doi: 10.1093/nar/25.11.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Brazin Kristine N., Mallis Robert J., Fulton D. Bruce, Andreotti Amy H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci U S A. 2002 Feb 5;99(4):1899–1904. doi: 10.1073/pnas.042529199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bryant Z., Subrahmanyan L., Tworoger M., LaTray L., Liu C. R., Li M. J., van den Engh G., Ruohola-Baker H. Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5559–5564. doi: 10.1073/pnas.96.10.5559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bukrinsky Michael I. Cyclophilins: unexpected messengers in intercellular communications. Trends Immunol. 2002 Jul;23(7):323–325. doi: 10.1016/s1471-4906(02)02237-8. [DOI] [PubMed] [Google Scholar]
  25. Bultynck G., De Smet P., Rossi D., Callewaert G., Missiaen L., Sorrentino V., De Smedt H., Parys J. B. Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Biochem J. 2001 Mar 1;354(Pt 2):413–422. doi: 10.1042/0264-6021:3540413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bush K. T., Hendrickson B. A., Nigam S. K. Induction of the FK506-binding protein, FKBP13, under conditions which misfold proteins in the endoplasmic reticulum. Biochem J. 1994 Nov 1;303(Pt 3):705–708. doi: 10.1042/bj3030705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  28. Cameron A. M., Steiner J. P., Sabatini D. M., Kaplin A. I., Walensky L. D., Snyder S. H. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1784–1788. doi: 10.1073/pnas.92.5.1784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Candé Céline, Vahsen Nicola, Kouranti Ilektra, Schmitt Elise, Daugas Eric, Spahr Chris, Luban Jeremy, Kroemer Romano T., Giordanetto Fabrizio, Garrido Carmen. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene. 2004 Feb 26;23(8):1514–1521. doi: 10.1038/sj.onc.1207279. [DOI] [PubMed] [Google Scholar]
  30. Carmody M., Mackrill J. J., Sorrentino V., O'Neill C. FKBP12 associates tightly with the skeletal muscle type 1 ryanodine receptor, but not with other intracellular calcium release channels. FEBS Lett. 2001 Sep 7;505(1):97–102. doi: 10.1016/s0014-5793(01)02787-9. [DOI] [PubMed] [Google Scholar]
  31. Chambers C. A., Gallinger S., Anderson S. K., Giardina S., Ortaldo J. R., Hozumi N., Roder J. Expression of the NK-TR gene is required for NK-like activity in human T cells. J Immunol. 1994 Mar 15;152(6):2669–2674. [PubMed] [Google Scholar]
  32. Chen Y. G., Liu F., Massague J. Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J. 1997 Jul 1;16(13):3866–3876. doi: 10.1093/emboj/16.13.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Colley N. J., Baker E. K., Stamnes M. A., Zuker C. S. The cyclophilin homolog ninaA is required in the secretory pathway. Cell. 1991 Oct 18;67(2):255–263. doi: 10.1016/0092-8674(91)90177-z. [DOI] [PubMed] [Google Scholar]
  34. Connern C. P., Halestrap A. P. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J. 1992 Jun 1;284(Pt 2):381–385. doi: 10.1042/bj2840381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Crackower Michael A., Kolas Nadine K., Noguchi Junko, Sarao Renu, Kikuchi Kazuhiro, Kaneko Hiroyuki, Kobayashi Eiji, Kawai Yasuhiro, Kozieradzki Ivona, Landers Rushin. Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science. 2003 May 23;300(5623):1291–1295. doi: 10.1126/science.1083022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Crenshaw D. G., Yang J., Means A. R., Kornbluth S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 1998 Aug 10;17(5):1315–1327. doi: 10.1093/emboj/17.5.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Davey M., Hannam C., Wong C., Brandl C. J. The yeast peptidyl proline isomerases FPR3 and FPR4, in high copy numbers, suppress defects resulting from the absence of the E3 ubiquitin ligase TOM1. Mol Gen Genet. 2000 Apr;263(3):520–526. doi: 10.1007/s004380051197. [DOI] [PubMed] [Google Scholar]
  38. Davies Todd H., Ning Yang-Min, Sánchez Edwin R. A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J Biol Chem. 2001 Dec 20;277(7):4597–4600. doi: 10.1074/jbc.C100531200. [DOI] [PubMed] [Google Scholar]
  39. Davies Todd H., Ning Yang-Min, Sánchez Edwin R. Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry. 2005 Feb 15;44(6):2030–2038. doi: 10.1021/bi048503v. [DOI] [PubMed] [Google Scholar]
  40. Davis J. M., Boswell B. A., Bächinger H. P. Thermal stability and folding of type IV procollagen and effect of peptidyl-prolyl cis-trans-isomerase on the folding of the triple helix. J Biol Chem. 1989 May 25;264(15):8956–8962. [PubMed] [Google Scholar]
  41. Devasahayam Gina, Chaturvedi Vishnu, Hanes Steven D. The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans. Genetics. 2002 Jan;160(1):37–48. doi: 10.1093/genetics/160.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Dolinski K., Scholz C., Muir R. S., Rospert S., Schmid F. X., Cardenas M. E., Heitman J. Functions of FKBP12 and mitochondrial cyclophilin active site residues in vitro and in vivo in Saccharomyces cerevisiae. Mol Biol Cell. 1997 Nov;8(11):2267–2280. doi: 10.1091/mbc.8.11.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Edgar Kyle A., Belvin Marcia, Parks Annette L., Whittaker Kellie, Mahoney Matt B., Nicoll Monique, Park Christopher C., Winter Christopher G., Chen Feng, Lickteig Kim. Synthetic lethality of retinoblastoma mutant cells in the Drosophila eye by mutation of a novel peptidyl prolyl isomerase gene. Genetics. 2005 Mar 2;170(1):161–171. doi: 10.1534/genetics.104.036343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Eisenmesser Elan Zohar, Bosco Daryl A., Akke Mikael, Kern Dorothee. Enzyme dynamics during catalysis. Science. 2002 Feb 22;295(5559):1520–1523. doi: 10.1126/science.1066176. [DOI] [PubMed] [Google Scholar]
  45. Franco L., Jiménez A., Demolder J., Molemans F., Fiers W., Contreras R. The nucleotide sequence of a third cyclophilin-homologous gene from Saccharomyces cerevisiae. Yeast. 1991 Dec;7(9):971–979. doi: 10.1002/yea.320070909. [DOI] [PubMed] [Google Scholar]
  46. Friedman J., Trahey M., Weissman I. Cloning and characterization of cyclophilin C-associated protein: a candidate natural cellular ligand for cyclophilin C. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6815–6819. doi: 10.1073/pnas.90.14.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Friedman J., Weissman I., Friedman J., Alpert S. An analysis of the expression of cyclophilin C reveals tissue restriction and an intriguing pattern in the mouse kidney. Am J Pathol. 1994 Jun;144(6):1247–1256. [PMC free article] [PubMed] [Google Scholar]
  48. Frigerio G., Pelham H. R. A Saccharomyces cerevisiae cyclophilin resident in the endoplasmic reticulum. J Mol Biol. 1993 Sep 5;233(1):183–188. doi: 10.1006/jmbi.1993.1497. [DOI] [PubMed] [Google Scholar]
  49. Fujimori F., Gunji W., Kikuchi J., Mogi T., Ohashi Y., Makino T., Oyama A., Okuhara K., Uchida T., Murakami Y. Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A. Biochem Biophys Res Commun. 2001 Nov 23;289(1):181–190. doi: 10.1006/bbrc.2001.5925. [DOI] [PubMed] [Google Scholar]
  50. Galat A., Metcalfe S. M. Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol. 1995;63(1):67–118. doi: 10.1016/0079-6107(94)00009-x. [DOI] [PubMed] [Google Scholar]
  51. Galat A. Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem. 1993 Sep 15;216(3):689–707. doi: 10.1111/j.1432-1033.1993.tb18189.x. [DOI] [PubMed] [Google Scholar]
  52. Galat A. Variations of sequences and amino acid compositions of proteins that sustain their biological functions: An analysis of the cyclophilin family of proteins. Arch Biochem Biophys. 1999 Nov 15;371(2):149–162. doi: 10.1006/abbi.1999.1434. [DOI] [PubMed] [Google Scholar]
  53. Galat Andrzej. Function-dependent clustering of orthologues and paralogues of cyclophilins. Proteins. 2004 Sep 1;56(4):808–820. doi: 10.1002/prot.20156. [DOI] [PubMed] [Google Scholar]
  54. Geer Lewis Y., Domrachev Michael, Lipman David J., Bryant Stephen H. CDART: protein homology by domain architecture. Genome Res. 2002 Oct;12(10):1619–1623. doi: 10.1101/gr.278202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Giardina S. L., Coffman J. D., Young H. A., Potter S. J., Frey J. L., Ortaldo J. R., Anderson S. K. Association of the expression of an SR-cyclophilin with myeloid cell differentiation. Blood. 1996 Mar 15;87(6):2269–2274. [PubMed] [Google Scholar]
  56. Goes F. S., Martin J. Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. Eur J Biochem. 2001 Apr;268(8):2281–2289. doi: 10.1046/j.1432-1327.2001.02105.x. [DOI] [PubMed] [Google Scholar]
  57. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  58. Göthel S. F., Marahiel M. A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci. 1999 Mar;55(3):423–436. doi: 10.1007/s000180050299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Halestrap A. P., Davidson A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990 May 15;268(1):153–160. doi: 10.1042/bj2680153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Halestrap Andrew P., McStay Gavin P., Clarke Samantha J. The permeability transition pore complex: another view. Biochimie. 2002 Feb-Mar;84(2-3):153–166. doi: 10.1016/s0300-9084(02)01375-5. [DOI] [PubMed] [Google Scholar]
  61. Handschumacher R. E., Harding M. W., Rice J., Drugge R. J., Speicher D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544–547. doi: 10.1126/science.6238408. [DOI] [PubMed] [Google Scholar]
  62. Hanes S. D., Shank P. R., Bostian K. A. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast. 1989 Jan-Feb;5(1):55–72. doi: 10.1002/yea.320050108. [DOI] [PubMed] [Google Scholar]
  63. Harding M. W., Handschumacher R. E., Speicher D. W. Isolation and amino acid sequence of cyclophilin. J Biol Chem. 1986 Jun 25;261(18):8547–8555. [PubMed] [Google Scholar]
  64. He Lihua, Lemasters John J. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett. 2002 Feb 13;512(1-3):1–7. doi: 10.1016/s0014-5793(01)03314-2. [DOI] [PubMed] [Google Scholar]
  65. He Zengyong, Li Legong, Luan Sheng. Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol. 2004 Mar 26;134(4):1248–1267. doi: 10.1104/pp.103.031005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hemenway C., Heitman J. Proline isomerases in microorganisms and small eukaryotes. Ann N Y Acad Sci. 1993 Nov 30;696:38–46. doi: 10.1111/j.1749-6632.1993.tb17140.x. [DOI] [PubMed] [Google Scholar]
  67. Himukai R., Kuzuhara T., Horikoshi M. Relationship between the subcellular localization and structures of catalytic domains of FKBP-type PPIases. J Biochem. 1999 Nov;126(5):879–888. doi: 10.1093/oxfordjournals.jbchem.a022530. [DOI] [PubMed] [Google Scholar]
  68. Honoré B., Vorum H. The CREC family, a novel family of multiple EF-hand, low-affinity Ca(2+)-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett. 2000 Jan 21;466(1):11–18. doi: 10.1016/s0014-5793(99)01780-9. [DOI] [PubMed] [Google Scholar]
  69. Horibe Tomohisa, Yosho Chieko, Okada Satoshi, Tsukamoto Masami, Nagai Hiroaki, Hagiwara Yasunari, Tujimoto Yoshiyuki, Kikuchi Masakazu. The chaperone activity of protein disulfide isomerase is affected by cyclophilin B and cyclosporin A in vitro. J Biochem. 2002 Sep;132(3):401–407. doi: 10.1093/oxfordjournals.jbchem.a003236. [DOI] [PubMed] [Google Scholar]
  70. Horowitz D. S., Kobayashi R., Krainer A. R. A new cyclophilin and the human homologues of yeast Prp3 and Prp4 form a complex associated with U4/U6 snRNPs. RNA. 1997 Dec;3(12):1374–1387. [PMC free article] [PubMed] [Google Scholar]
  71. Horowitz David S., Lee Edward J., Mabon Stephen A., Misteli Tom. A cyclophilin functions in pre-mRNA splicing. EMBO J. 2002 Feb 1;21(3):470–480. doi: 10.1093/emboj/21.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Horton P., Nakai K. A probabilistic classification system for predicting the cellular localization sites of proteins. Proc Int Conf Intell Syst Mol Biol. 1996;4:109–115. [PubMed] [Google Scholar]
  73. Horton P., Nakai K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol. 1997;5:147–152. [PubMed] [Google Scholar]
  74. Hsu T., McRackan D., Vincent T. S., Gert de Couet H. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nat Cell Biol. 2001 Jun;3(6):538–543. doi: 10.1038/35078508. [DOI] [PubMed] [Google Scholar]
  75. Huang H. K., Forsburg S. L., John U. P., O'Connell M. J., Hunter T. Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe. J Cell Sci. 2001 Oct;114(Pt 20):3779–3788. doi: 10.1242/jcs.114.20.3779. [DOI] [PubMed] [Google Scholar]
  76. Huh Won-Ki, Falvo James V., Gerke Luke C., Carroll Adam S., Howson Russell W., Weissman Jonathan S., O'Shea Erin K. Global analysis of protein localization in budding yeast. Nature. 2003 Oct 16;425(6959):686–691. doi: 10.1038/nature02026. [DOI] [PubMed] [Google Scholar]
  77. Hung D. T., Schreiber S. L. cDNA cloning of a human 25 kDa FK506 and rapamycin binding protein. Biochem Biophys Res Commun. 1992 Apr 30;184(2):733–738. doi: 10.1016/0006-291x(92)90651-z. [DOI] [PubMed] [Google Scholar]
  78. Hur Sun, Bruice Thomas C. The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin. J Am Chem Soc. 2002 Jun 26;124(25):7303–7313. doi: 10.1021/ja020222s. [DOI] [PubMed] [Google Scholar]
  79. Inoue T., Yoshida Y., Isaka Y., Tagawa K. Isolation of mitochondrial cyclophilin from bovine heart. Biochem Biophys Res Commun. 1993 Feb 15;190(3):857–863. doi: 10.1006/bbrc.1993.1127. [DOI] [PubMed] [Google Scholar]
  80. Ivery M. T. Immunophilins: switched on protein binding domains? Med Res Rev. 2000 Nov;20(6):452–484. doi: 10.1002/1098-1128(200011)20:6<452::aid-med2>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  81. Jin Y. J., Albers M. W., Lane W. S., Bierer B. E., Schreiber S. L., Burakoff S. J. Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6677–6681. doi: 10.1073/pnas.88.15.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Jin Y. J., Burakoff S. J. The 25-kDa FK506-binding protein is localized in the nucleus and associates with casein kinase II and nucleolin. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7769–7773. doi: 10.1073/pnas.90.16.7769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Jin Z. G., Melaragno M. G., Liao D. F., Yan C., Haendeler J., Suh Y. A., Lambeth J. D., Berk B. C. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res. 2000 Oct 27;87(9):789–796. doi: 10.1161/01.res.87.9.789. [DOI] [PubMed] [Google Scholar]
  84. Kern G., Kern D., Schmid F. X., Fischer G. A kinetic analysis of the folding of human carbonic anhydrase II and its catalysis by cyclophilin. J Biol Chem. 1995 Jan 13;270(2):740–745. doi: 10.1074/jbc.270.2.740. [DOI] [PubMed] [Google Scholar]
  85. Klappa P., Freedman R. B., Zimmermann R. Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. Eur J Biochem. 1995 Sep 15;232(3):755–764. [PubMed] [Google Scholar]
  86. Kops Oliver, Zhou Xiao Zhen, Lu Kun Ping. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. FEBS Lett. 2002 Feb 27;513(2-3):305–311. doi: 10.1016/s0014-5793(02)02288-3. [DOI] [PubMed] [Google Scholar]
  87. Koser P. L., Bergsma D. J., Cafferkey R., Eng W. K., McLaughlin M. M., Ferrara A., Silverman C., Kasyan K., Bossard M. J., Johnson R. K. The CYP2 gene of Saccharomyces cerevisiae encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase with an N-terminal signal sequence. Gene. 1991 Dec 1;108(1):73–80. doi: 10.1016/0378-1119(91)90489-x. [DOI] [PubMed] [Google Scholar]
  88. Krzywicka A., Beisson J., Keller A. M., Cohen J., Jerka-Dziadosz M., Klotz C. KIN241: a gene involved in cell morphogenesis in Paramecium tetraurelia reveals a novel protein family of cyclophilin-RNA interacting proteins (CRIPs) conserved from fission yeast to man. Mol Microbiol. 2001 Oct;42(1):257–267. doi: 10.1046/j.1365-2958.2001.02634.x. [DOI] [PubMed] [Google Scholar]
  89. Kumar Anuj, Agarwal Seema, Heyman John A., Matson Sandra, Heidtman Matthew, Piccirillo Stacy, Umansky Lara, Drawid Amar, Jansen Ronald, Liu Yang. Subcellular localization of the yeast proteome. Genes Dev. 2002 Mar 15;16(6):707–719. doi: 10.1101/gad.970902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Kuzuhara Takashi, Horikoshi Masami. A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat Struct Mol Biol. 2004 Feb 8;11(3):275–283. doi: 10.1038/nsmb733. [DOI] [PubMed] [Google Scholar]
  91. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  92. Lebeau M. C., Jung-Testas I., Baulieu E. E. Intracellular distribution of a cytoplasmic progesterone receptor mutant and of immunophilins cyclophilin 40 and FKBP59: effects of cyclosporin A, of various metabolic inhibitors and of several culture conditions. J Steroid Biochem Mol Biol. 1999 Sep-Oct;70(4-6):219–228. doi: 10.1016/s0960-0760(99)00118-1. [DOI] [PubMed] [Google Scholar]
  93. Liu W., Youn H. D., Zhou X. Z., Lu K. P., Liu J. O. Binding and regulation of the transcription factor NFAT by the peptidyl prolyl cis-trans isomerase Pin1. FEBS Lett. 2001 May 11;496(2-3):105–108. doi: 10.1016/s0014-5793(01)02411-5. [DOI] [PubMed] [Google Scholar]
  94. Lu K. P., Hanes S. D., Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature. 1996 Apr 11;380(6574):544–547. doi: 10.1038/380544a0. [DOI] [PubMed] [Google Scholar]
  95. Lu Kun Ping, Liou Yih Cherng, Zhou Xiao Zhen. Pinning down proline-directed phosphorylation signaling. Trends Cell Biol. 2002 Apr;12(4):164–172. doi: 10.1016/s0962-8924(02)02253-5. [DOI] [PubMed] [Google Scholar]
  96. Lu P. J., Wulf G., Zhou X. Z., Davies P., Lu K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature. 1999 Jun 24;399(6738):784–788. doi: 10.1038/21650. [DOI] [PubMed] [Google Scholar]
  97. Maleszka R., Hanes S. D., Hackett R. L., de Couet H. G., Miklos G. L. The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):447–451. doi: 10.1073/pnas.93.1.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Maleszka R., Lupas A., Hanes S. D., Miklos G. L. The dodo gene family encodes a novel protein involved in signal transduction and protein folding. Gene. 1997 Dec 12;203(2):89–93. doi: 10.1016/s0378-1119(97)00522-2. [DOI] [PubMed] [Google Scholar]
  99. Manning-Krieg U. C., Henríquez R., Cammas F., Graff P., Gavériaux S., Movva N. R. Purification of FKBP-70, a novel immunophilin from Saccharomyces cerevisiae, and cloning of its structural gene, FPR3. FEBS Lett. 1994 Sep 19;352(1):98–103. doi: 10.1016/0014-5793(94)00927-9. [DOI] [PubMed] [Google Scholar]
  100. Mark P. J., Ward B. K., Kumar P., Lahooti H., Minchin R. F., Ratajczak T. Human cyclophilin 40 is a heat shock protein that exhibits altered intracellular localization following heat shock. Cell Stress Chaperones. 2001 Jan;6(1):59–70. doi: 10.1379/1466-1268(2001)006<0059:hciahs>2.0.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Marsh J. A., Kalton H. M., Gaber R. F. Cns1 is an essential protein associated with the hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7Delta cells. Mol Cell Biol. 1998 Dec;18(12):7353–7359. doi: 10.1128/mcb.18.12.7353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Matouschek A., Rospert S., Schmid K., Glick B. S., Schatz G. Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6319–6323. doi: 10.1073/pnas.92.14.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mazroui R., Puoti A., Krämer A. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. RNA. 1999 Dec;5(12):1615–1631. doi: 10.1017/s1355838299991872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Meunier Laurent, Usherwood Young-Kwang, Chung Kyung Tae, Hendershot Linda M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell. 2002 Dec;13(12):4456–4469. doi: 10.1091/mbc.E02-05-0311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Mi H., Kops O., Zimmermann E., Jäschke A., Tropschug M. A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett. 1996 Dec 2;398(2-3):201–205. doi: 10.1016/s0014-5793(96)01248-3. [DOI] [PubMed] [Google Scholar]
  106. Munn K., Steward R. The shut-down gene of Drosophila melanogaster encodes a novel FK506-binding protein essential for the formation of germline cysts during oogenesis. Genetics. 2000 Sep;156(1):245–256. doi: 10.1093/genetics/156.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Nagata T., Kishi H., Liu Q. L., Yoshino T., Matsuda T., Jin Z. X., Murayama K., Tsukada K., Muraguchi A. Possible involvement of cyclophilin B and caspase-activated deoxyribonuclease in the induction of chromosomal DNA degradation in TCR-stimulated thymocytes. J Immunol. 2000 Oct 15;165(8):4281–4289. doi: 10.4049/jimmunol.165.8.4281. [DOI] [PubMed] [Google Scholar]
  108. Nair S. C., Rimerman R. A., Toran E. J., Chen S., Prapapanich V., Butts R. N., Smith D. F. Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor. Mol Cell Biol. 1997 Feb;17(2):594–603. doi: 10.1128/mcb.17.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Nakagawa Takashi, Shimizu Shigeomi, Watanabe Tetsuya, Yamaguchi Osamu, Otsu Kinya, Yamagata Hirotaka, Inohara Hidenori, Kubo Takeshi, Tsujimoto Yoshihide. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005 Mar 31;434(7033):652–658. doi: 10.1038/nature03317. [DOI] [PubMed] [Google Scholar]
  110. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  111. Nestel F. P., Colwill K., Harper S., Pawson T., Anderson S. K. RS cyclophilins: identification of an NK-TR1-related cyclophilin. Gene. 1996 Nov 21;180(1-2):151–155. doi: 10.1016/s0378-1119(96)00436-2. [DOI] [PubMed] [Google Scholar]
  112. Nigam S. K., Jin Y. J., Jin M. J., Bush K. T., Bierer B. E., Burakoff S. J. Localization of the FK506-binding protein, FKBP 13, to the lumen of the endoplasmic reticulum. Biochem J. 1993 Sep 1;294(Pt 2):511–515. doi: 10.1042/bj2940511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Noguchi N., Takasawa S., Nata K., Tohgo A., Kato I., Ikehata F., Yonekura H., Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem. 1997 Feb 7;272(6):3133–3136. doi: 10.1074/jbc.272.6.3133. [DOI] [PubMed] [Google Scholar]
  114. Ohi Melanie D., Link Andrew J., Ren Liping, Jennings Jennifer L., McDonald W. Hayes, Gould Kathleen L. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol. 2002 Apr;22(7):2011–2024. doi: 10.1128/MCB.22.7.2011-2024.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Ohi R., Feoktistova A., McCann S., Valentine V., Look A. T., Lipsick J. S., Gould K. L. Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Mol Cell Biol. 1998 Jul;18(7):4097–4108. doi: 10.1128/mcb.18.7.4097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Ozaki K., Fujiwara T., Kawai A., Shimizu F., Takami S., Okuno S., Takeda S., Shimada Y., Nagata M., Watanabe T. Cloning, expression and chromosomal mapping of a novel cyclophilin-related gene (PPIL1) from human fetal brain. Cytogenet Cell Genet. 1996;72(2-3):242–245. doi: 10.1159/000134199. [DOI] [PubMed] [Google Scholar]
  117. Padilla Philip Ian, Chang Min-Ju, Pacheco-Rodriguez Gustavo, Adamik Ronald, Moss Joel, Vaughan Martha. Interaction of FK506-binding protein 13 with brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1): effects of FK506. Proc Natl Acad Sci U S A. 2003 Feb 26;100(5):2322–2327. doi: 10.1073/pnas.2628047100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Page A. P., MacNiven K., Hengartner M. O. Cloning and biochemical characterization of the cyclophilin homologues from the free-living nematode Caenorhabditis elegans. Biochem J. 1996 Jul 1;317(Pt 1):179–185. doi: 10.1042/bj3170179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Page A. P., Winter A. D. A divergent multi-domain cyclophilin is highly conserved between parasitic and free-living nematode species and is important in larval muscle development. Mol Biochem Parasitol. 1998 Sep 15;95(2):215–227. doi: 10.1016/s0166-6851(98)00096-6. [DOI] [PubMed] [Google Scholar]
  120. Partaledis J. A., Berlin V. The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5450–5454. doi: 10.1073/pnas.90.12.5450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Patterson C. E., Schaub T., Coleman E. J., Davis E. C. Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol Biol Cell. 2000 Nov;11(11):3925–3935. doi: 10.1091/mbc.11.11.3925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Patterson Charles E., Gao Jimin, Rooney Alejandro P., Davis Elaine C. Genomic organization of mouse and human 65 kDa FK506-binding protein genes and evolution of the FKBP multigene family. Genomics. 2002 Jun;79(6):881–889. doi: 10.1006/geno.2002.6777. [DOI] [PubMed] [Google Scholar]
  123. Pemberton Trevor J., Rulten Stuart L., Kay John E. Identification and characterisation of Schizosaccharomyces pombe cyclophilin 3, a cyclosporin A insensitive orthologue of human USA-CyP. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Mar 25;786(1-2):81–91. doi: 10.1016/s1570-0232(02)00738-9. [DOI] [PubMed] [Google Scholar]
  124. Pichler Andrea, Gast Andreas, Seeler Jacob S., Dejean Anne, Melchior Frauke. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell. 2002 Jan 11;108(1):109–120. doi: 10.1016/s0092-8674(01)00633-x. [DOI] [PubMed] [Google Scholar]
  125. Picken Nichola C., Eschenlauer Sylvain, Taylor Paul, Page Antony P., Walkinshaw Malcolm D. Structural and biological characterisation of the gut-associated cyclophilin B isoforms from Caenorhabditis elegans. J Mol Biol. 2002 Sep 6;322(1):15–25. doi: 10.1016/s0022-2836(02)00712-x. [DOI] [PubMed] [Google Scholar]
  126. Pijnappel W. W., Schaft D., Roguev A., Shevchenko A., Tekotte H., Wilm M., Rigaut G., Séraphin B., Aasland R., Stewart A. F. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev. 2001 Nov 15;15(22):2991–3004. doi: 10.1101/gad.207401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Pratt W. B., Toft D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997 Jun;18(3):306–360. doi: 10.1210/edrv.18.3.0303. [DOI] [PubMed] [Google Scholar]
  128. Price E. R., Jin M., Lim D., Pati S., Walsh C. T., McKeon F. D. Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3931–3935. doi: 10.1073/pnas.91.9.3931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Price E. R., Zydowsky L. D., Jin M. J., Baker C. H., McKeon F. D., Walsh C. T. Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1903–1907. doi: 10.1073/pnas.88.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Prodromou C., Siligardi G., O'Brien R., Woolfson D. N., Regan L., Panaretou B., Ladbury J. E., Piper P. W., Pearl L. H. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 1999 Feb 1;18(3):754–762. doi: 10.1093/emboj/18.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Pushkarsky T., Zybarth G., Dubrovsky L., Yurchenko V., Tang H., Guo H., Toole B., Sherry B., Bukrinsky M. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001 May 15;98(11):6360–6365. doi: 10.1073/pnas.111583198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Ranganathan R., Lu K. P., Hunter T., Noel J. P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell. 1997 Jun 13;89(6):875–886. doi: 10.1016/s0092-8674(00)80273-1. [DOI] [PubMed] [Google Scholar]
  133. Rassow J., Mohrs K., Koidl S., Barthelmess I. B., Pfanner N., Tropschug M. Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. Mol Cell Biol. 1995 May;15(5):2654–2662. doi: 10.1128/mcb.15.5.2654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Reader J. S., Van Nuland N. A., Thompson G. S., Ferguson S. J., Dobson C. M., Radford S. E. A partially folded intermediate species of the beta-sheet protein apo-pseudoazurin is trapped during proline-limited folding. Protein Sci. 2001 Jun;10(6):1216–1224. doi: 10.1110/ps.52801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Ren Ping, Rossettini Anne, Chaturvedi Vishnu, Hanes Steven D. The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. Microbiology. 2005 May;151(Pt 5):1593–1605. doi: 10.1099/mic.0.27786-0. [DOI] [PubMed] [Google Scholar]
  136. Riggs Daniel L., Roberts Patricia J., Chirillo Samantha C., Cheung-Flynn Joyce, Prapapanich Viravan, Ratajczak Thomas, Gaber Richard, Picard Didier, Smith David F. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 2003 Mar 3;22(5):1158–1167. doi: 10.1093/emboj/cdg108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Rivière S., Ménez A., Galat A. On the localization of FKBP25 in T-lymphocytes. FEBS Lett. 1993 Jan 11;315(3):247–251. doi: 10.1016/0014-5793(93)81173-w. [DOI] [PubMed] [Google Scholar]
  138. Romano Patrick G. N., Horton Peter, Gray Julie E. The Arabidopsis cyclophilin gene family. Plant Physiol. 2004 Mar 29;134(4):1268–1282. doi: 10.1104/pp.103.022160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Rubin G. M., Yandell M. D., Wortman J. R., Gabor Miklos G. L., Nelson C. R., Hariharan I. K., Fortini M. E., Li P. W., Apweiler R., Fleischmann W. Comparative genomics of the eukaryotes. Science. 2000 Mar 24;287(5461):2204–2215. doi: 10.1126/science.287.5461.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Rulten S., Thorpe J., Kay J. Identification of eukaryotic parvulin homologues: a new subfamily of peptidylprolyl cis-trans isomerases. Biochem Biophys Res Commun. 1999 Jun 16;259(3):557–562. doi: 10.1006/bbrc.1999.0828. [DOI] [PubMed] [Google Scholar]
  141. Rycyzyn M. A., Reilly S. C., O'Malley K., Clevenger C. V. Role of cyclophilin B in prolactin signal transduction and nuclear retrotranslocation. Mol Endocrinol. 2000 Aug;14(8):1175–1186. doi: 10.1210/mend.14.8.0508. [DOI] [PubMed] [Google Scholar]
  142. Rycyzyn Michael A., Clevenger Charles V. The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci U S A. 2002 May 7;99(10):6790–6795. doi: 10.1073/pnas.092160699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. S&aacute;nchez ER, Ning YM. Immunophilins, Heat Shock Proteins, and Glucocorticoid Receptor Actions in Vivo. Methods. 1996 Apr;9(2):188–200. doi: 10.1006/meth.1996.0025. [DOI] [PubMed] [Google Scholar]
  144. Schneuwly S., Shortridge R. D., Larrivee D. C., Ono T., Ozaki M., Pak W. L. Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proc Natl Acad Sci U S A. 1989 Jul;86(14):5390–5394. doi: 10.1073/pnas.86.14.5390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Schreiber S. L., Crabtree G. R. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992 Apr;13(4):136–142. doi: 10.1016/0167-5699(92)90111-J. [DOI] [PubMed] [Google Scholar]
  146. Shan X., Xue Z., Mélèse T. Yeast NPI46 encodes a novel prolyl cis-trans isomerase that is located in the nucleolus. J Cell Biol. 1994 Aug;126(4):853–862. doi: 10.1083/jcb.126.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Shieh B. H., Stamnes M. A., Seavello S., Harris G. L., Zuker C. S. The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature. 1989 Mar 2;338(6210):67–70. doi: 10.1038/338067a0. [DOI] [PubMed] [Google Scholar]
  148. Shou W., Aghdasi B., Armstrong D. L., Guo Q., Bao S., Charng M. J., Mathews L. M., Schneider M. D., Hamilton S. L., Matzuk M. M. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature. 1998 Jan 29;391(6666):489–492. doi: 10.1038/35146. [DOI] [PubMed] [Google Scholar]
  149. Siekierka J. J., Hung S. H., Poe M., Lin C. S., Sigal N. H. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature. 1989 Oct 26;341(6244):755–757. doi: 10.1038/341755a0. [DOI] [PubMed] [Google Scholar]
  150. Skruzný M., Ambrozková M., Fuková I., Martínková K., Blahůsková A., Hamplová L., Půta F., Folk P. Cyclophilins of a novel subfamily interact with SNW/SKIP coregulator in Dictyostelium discoideum and Schizosaccharomyces pombe. Biochim Biophys Acta. 2001 Oct 31;1521(1-3):146–151. doi: 10.1016/s0167-4781(01)00301-3. [DOI] [PubMed] [Google Scholar]
  151. Stamnes M. A., Shieh B. H., Chuman L., Harris G. L., Zuker C. S. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell. 1991 Apr 19;65(2):219–227. doi: 10.1016/0092-8674(91)90156-s. [DOI] [PubMed] [Google Scholar]
  152. Steinmann B., Bruckner P., Superti-Furga A. Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem. 1991 Jan 15;266(2):1299–1303. [PubMed] [Google Scholar]
  153. Sullivan P. G., Thompson M. B., Scheff S. W. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol. 1999 Nov;160(1):226–234. doi: 10.1006/exnr.1999.7197. [DOI] [PubMed] [Google Scholar]
  154. Syed Farhat, Rycyzyn Michael A., Westgate Liz, Clevenger Charles V. A novel and functional interaction between cyclophilin A and prolactin receptor. Endocrine. 2003 Feb-Mar;20(1-2):83–90. doi: 10.1385/ENDO:20:1-2:83. [DOI] [PubMed] [Google Scholar]
  155. Sykes K., Gething M. J., Sambrook J. Proline isomerases function during heat shock. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5853–5857. doi: 10.1073/pnas.90.12.5853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Teigelkamp S., Achsel T., Mundt C., Göthel S. F., Cronshagen U., Lane W. S., Marahiel M., Lührmann R. The 20kD protein of human [U4/U6.U5] tri-snRNPs is a novel cyclophilin that forms a complex with the U4/U6-specific 60kD and 90kD proteins. RNA. 1998 Feb;4(2):127–141. [PMC free article] [PubMed] [Google Scholar]
  157. Theopold U., Dal Zotto L., Hultmark D. FKBP39, a Drosophila member of a family of proteins that bind the immunosuppressive drug FK506. Gene. 1995 Apr 24;156(2):247–251. doi: 10.1016/0378-1119(95)00019-3. [DOI] [PubMed] [Google Scholar]
  158. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Uchida T., Fujimori F., Tradler T., Fischer G., Rahfeld J. U. Identification and characterization of a 14 kDa human protein as a novel parvulin-like peptidyl prolyl cis/trans isomerase. FEBS Lett. 1999 Mar 12;446(2-3):278–282. doi: 10.1016/s0014-5793(99)00239-2. [DOI] [PubMed] [Google Scholar]
  160. Waldmeier Peter C., Feldtrauer Jean-Jacques, Qian Ting, Lemasters John J. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol. 2002 Jul;62(1):22–29. doi: 10.1124/mol.62.1.22. [DOI] [PubMed] [Google Scholar]
  161. Wang B. B., Hayenga K. J., Payan D. G., Fisher J. M. Identification of a nuclear-specific cyclophilin which interacts with the proteinase inhibitor eglin c. Biochem J. 1996 Feb 15;314(Pt 1):313–319. doi: 10.1042/bj3140313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Ward B. K., Kumar P., Turbett G. R., Edmondston J. E., Papadimitriou J. M., Laing N. G., Ingram D. M., Minchin R. F., Ratajczak T. Allelic loss of cyclophilin 40, an estrogen receptor-associated immunophilin, in breast carcinomas. J Cancer Res Clin Oncol. 2001 Feb;127(2):109–115. doi: 10.1007/s004320000182. [DOI] [PubMed] [Google Scholar]
  163. Warth R., Briand P. A., Picard D. Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation. Biol Chem. 1997 May;378(5):381–391. doi: 10.1515/bchm.1997.378.5.381. [DOI] [PubMed] [Google Scholar]
  164. Weighardt F., Cobianchi F., Cartegni L., Chiodi I., Villa A., Riva S., Biamonti G. A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J Cell Sci. 1999 May;112(Pt 10):1465–1476. doi: 10.1242/jcs.112.10.1465. [DOI] [PubMed] [Google Scholar]
  165. Weisman R., Creanor J., Fantes P. A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein. EMBO J. 1996 Feb 1;15(3):447–456. [PMC free article] [PubMed] [Google Scholar]
  166. Wen Y., Shatkin A. J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 1999 Jul 15;13(14):1774–1779. doi: 10.1101/gad.13.14.1774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Wilcox Cathy B., Rossettini Anne, Hanes Steven D. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae. Genetics. 2004 May;167(1):93–105. doi: 10.1534/genetics.167.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Wood V., Gwilliam R., Rajandream M-A, Lyne M., Lyne R., Stewart A., Sgouros J., Peat N., Hayles J., Baker S. The genome sequence of Schizosaccharomyces pombe. Nature. 2002 Feb 21;415(6874):871–880. doi: 10.1038/nature724. [DOI] [PubMed] [Google Scholar]
  169. Wood V., Rutherford K. M., Ivens A., Rajandream M. A., Barrell B. A re-annotation of the Saccharomyces cerevisiae genome. Comp Funct Genomics. 2001;2(3):143–154. doi: 10.1002/cfg.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Wu X., Wilcox C. B., Devasahayam G., Hackett R. L., Arévalo-Rodríguez M., Cardenas M. E., Heitman J., Hanes S. D. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 2000 Jul 17;19(14):3727–3738. doi: 10.1093/emboj/19.14.3727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Wu Xiaoyun, Rossettini Anne, Hanes Steven D. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae. Genetics. 2003 Dec;165(4):1687–1702. doi: 10.1093/genetics/165.4.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Xu Yu-Xin, Hirose Yutaka, Zhou Xiao Zhen, Lu Kun Ping, Manley James L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev. 2003 Nov 4;17(22):2765–2776. doi: 10.1101/gad.1135503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Yang W. M., Yao Y. L., Seto E. The FK506-binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1. EMBO J. 2001 Sep 3;20(17):4814–4825. doi: 10.1093/emboj/20.17.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Yu H., Larsen P. L. DAF-16-dependent and independent expression targets of DAF-2 insulin receptor-like pathway in Caenorhabditis elegans include FKBPs. J Mol Biol. 2001 Dec 14;314(5):1017–1028. doi: 10.1006/jmbi.2000.5210. [DOI] [PubMed] [Google Scholar]
  175. Yurchenko V., O'Connor M., Dai W. W., Guo H., Toole B., Sherry B., Bukrinsky M. CD147 is a signaling receptor for cyclophilin B. Biochem Biophys Res Commun. 2001 Nov 9;288(4):786–788. doi: 10.1006/bbrc.2001.5847. [DOI] [PubMed] [Google Scholar]
  176. Zacchi Paola, Gostissa Monica, Uchida Takafumi, Salvagno Clio, Avolio Fabio, Volinia Stefano, Ronai Ze'ev, Blandino Giovanni, Schneider Claudio, Del Sal Giannino. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature. 2002 Oct 2;419(6909):853–857. doi: 10.1038/nature01120. [DOI] [PubMed] [Google Scholar]
  177. Zaffran S. Molecular cloning and embryonic expression of dFKBP59, a novel Drosophila FK506-binding protein. Gene. 2000 Apr 4;246(1-2):103–109. doi: 10.1016/s0378-1119(00)00058-5. [DOI] [PubMed] [Google Scholar]
  178. Zhang Jianying, Herscovitz Haya. Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J Biol Chem. 2002 Oct 22;278(9):7459–7468. doi: 10.1074/jbc.M207976200. [DOI] [PubMed] [Google Scholar]
  179. Zheng Hongwu, You Han, Zhou Xiao Zhen, Murray Stephen A., Uchida Takafumi, Wulf Gerburg, Gu Ling, Tang Xiaoren, Lu Kun Ping, Xiao Zhi-Xiong Jim. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature. 2002 Oct 2;419(6909):849–853. doi: 10.1038/nature01116. [DOI] [PubMed] [Google Scholar]
  180. Zhou X. Z., Kops O., Werner A., Lu P. J., Shen M., Stoller G., Küllertz G., Stark M., Fischer G., Lu K. P. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell. 2000 Oct;6(4):873–883. doi: 10.1016/s1097-2765(05)00083-3. [DOI] [PubMed] [Google Scholar]
  181. Zhou Z., Ying K., Dai J., Tang R., Wang W., Huang Y., Zhao W., Xie Y., Mao Y. Molecular cloning and characterization of a novel peptidylprolyl isomerase (cyclophilin)-like gene (PPIL3) from human fetal brain. Cytogenet Cell Genet. 2001;92(3-4):231–236. doi: 10.1159/000056909. [DOI] [PubMed] [Google Scholar]
  182. Zorio D. A., Blumenthal T. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans. RNA. 1999 Apr;5(4):487–494. doi: 10.1017/s1355838299982225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES