Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2005 Jul-Aug;6(5-6):268–276. doi: 10.1002/cfg.483

Atypical CTSK Transcripts and ARNT Transcription Read-Through Into CTSK

Fabienne S Giraudeau 1, Jean-Philippe Walhin 2, Paul R Murdock 2, Nigel K Spurr 1, Ian C Gray 1,3,
PMCID: PMC2447513  PMID: 18629217

Abstract

The aryl hydrocarbon receptor nuclear translocator (ARNT) and cathepsin K (CTSK) genes lie in a tandem head-to-tail arrangement on human chromosome 1. The two genes are in extremely close proximity; the usual CTSK transcription start site is less than 1.4 kb downstream of the end of the longest reported ARNT transcript. By generating an RT-PCR product that overlaps both the 3′ end of ARNT and the 5′ end of CTSK, we show that ARNT transcripts may extend through the ARNTCTSK intergenic region and progress into the CTSK gene. Furthermore, by using quantitative RT-PCR from several tissues to detect the ARNT expression signature in CTSK introns, we show that ARNT transcripts can read through into CTSK as far as CTSK intron 3, extending approximately 3.7 kb downstream of the end of the longest previously described ARNT mRNA. Given that ARNT and CTSK are expressed in an overlapping range of tissues, ARNT read-through may have a negative impact on CTSK transcript levels by interfering with CTSK expression. We also present evidence for novel CTSK transcripts following sequence analysis of CTSK-derived ESTs and RT-PCR products. These transcripts show alternate 5′ splicing and or 5′ extension and are sometimes initiated from a cryptic alternative promoter which is upstream of the known CTSK promoter and possibly in the 3′ UTR of ARNT.

Full Text

The Full Text of this article is available as a PDF (202.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Brömme D., Okamoto K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler. 1995 Jun;376(6):379–384. doi: 10.1515/bchm3.1995.376.6.379. [DOI] [PubMed] [Google Scholar]
  3. Brömme D., Okamoto K., Wang B. B., Biroc S. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem. 1996 Jan 26;271(4):2126–2132. doi: 10.1074/jbc.271.4.2126. [DOI] [PubMed] [Google Scholar]
  4. Campbell H. D., Fountain S., Young I. G., Claudianos C., Hoheisel J. D., Chen K. S., Lupski J. R. Genomic structure, evolution, and expression of human FLII, a gelsolin and leucine-rich-repeat family member: overlap with LLGL. Genomics. 1997 May 15;42(1):46–54. doi: 10.1006/geno.1997.4709. [DOI] [PubMed] [Google Scholar]
  5. Carver L. A., Hogenesch J. B., Bradfield C. A. Tissue specific expression of the rat Ah-receptor and ARNT mRNAs. Nucleic Acids Res. 1994 Aug 11;22(15):3038–3044. doi: 10.1093/nar/22.15.3038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman-Smith Anne, Lutwyche Jodi K., Whitelaw Murray L. Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J Biol Chem. 2003 Nov 24;279(7):5353–5362. doi: 10.1074/jbc.M310041200. [DOI] [PubMed] [Google Scholar]
  7. Chapman C. G., Meadows H. J., Godden R. J., Campbell D. A., Duckworth M., Kelsell R. E., Murdock P. R., Randall A. D., Rennie G. I., Gloger I. S. Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res. 2000 Oct 20;82(1-2):74–83. doi: 10.1016/s0169-328x(00)00183-2. [DOI] [PubMed] [Google Scholar]
  8. Chen F., MacDonald C. C., Wilusz J. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995 Jul 25;23(14):2614–2620. doi: 10.1093/nar/23.14.2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dear T. N., Meier N. T., Hunn M., Boehm T. Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family. Genomics. 2000 Sep 1;68(2):152–160. doi: 10.1006/geno.2000.6289. [DOI] [PubMed] [Google Scholar]
  10. Greger I. H., Proudfoot N. J. Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J. 1998 Aug 17;17(16):4771–4779. doi: 10.1093/emboj/17.16.4771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson S. L., Ryan K., Sollner-Webb B. The promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in. Genes Dev. 1989 Feb;3(2):212–223. doi: 10.1101/gad.3.2.212. [DOI] [PubMed] [Google Scholar]
  12. Hou Wu-Shiun, Li Weijie, Keyszer Gernot, Weber Ekkehard, Levy Roger, Klein Michael J., Gravallese Ellen M., Goldring Steven R., Brömme Dieter. Comparison of cathepsins K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum. 2002 Mar;46(3):663–674. doi: 10.1002/art.10114. [DOI] [PubMed] [Google Scholar]
  13. Inaoka T., Bilbe G., Ishibashi O., Tezuka K., Kumegawa M., Kokubo T. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun. 1995 Jan 5;206(1):89–96. doi: 10.1006/bbrc.1995.1013. [DOI] [PubMed] [Google Scholar]
  14. Li Zhenqiang, Yasuda Yoshiyuki, Li Weijie, Bogyo Matthew, Katz Norman, Gordon Ronald E., Fields Gregg B., Brömme Dieter. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem. 2003 Nov 26;279(7):5470–5479. doi: 10.1074/jbc.M310349200. [DOI] [PubMed] [Google Scholar]
  15. Motyckova G., Weilbaecher K. N., Horstmann M., Rieman D. J., Fisher D. Z., Fisher D. E. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5798–5803. doi: 10.1073/pnas.091479298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Proudfoot N. J. Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature. 1986 Aug 7;322(6079):562–565. doi: 10.1038/322562a0. [DOI] [PubMed] [Google Scholar]
  17. Proudfoot Nick J., Furger Andre, Dye Michael J. Integrating mRNA processing with transcription. Cell. 2002 Feb 22;108(4):501–512. doi: 10.1016/s0092-8674(02)00617-7. [DOI] [PubMed] [Google Scholar]
  18. Rantakokko J., Kiviranta R., Eerola R., Aro H. T., Vuorio E. Complete genomic structure of the mouse cathepsin K gene (Ctsk) and its localization next to the Arnt gene on mouse chromosome 3. Matrix Biol. 1999 Apr;18(2):155–161. doi: 10.1016/s0945-053x(99)00010-4. [DOI] [PubMed] [Google Scholar]
  19. Rieman D. J., McClung H. A., Dodds R. A., Hwang S. M., Holmes M. W., James I. E., Drake F. H., Gowen M. Biosynthesis and processing of cathepsin K in cultured human osteoclasts. Bone. 2001 Mar;28(3):282–289. doi: 10.1016/s8756-3282(00)00445-2. [DOI] [PubMed] [Google Scholar]
  20. Rood J. A., Van Horn S., Drake F. H., Gowen M., Debouck C. Genomic organization and chromosome localization of the human cathepsin K gene (CTSK). Genomics. 1997 Apr 15;41(2):169–176. doi: 10.1006/geno.1997.4614. [DOI] [PubMed] [Google Scholar]
  21. Scheel J., Schrenk D. Genomic structure of the human Ah receptor nuclear translocator gene (hARNT). Hum Genet. 2000 Oct;107(4):397–399. doi: 10.1007/s004390000379. [DOI] [PubMed] [Google Scholar]
  22. Swanson Hollie I. DNA binding and protein interactions of the AHR/ARNT heterodimer that facilitate gene activation. Chem Biol Interact. 2002 Sep 20;141(1-2):63–76. doi: 10.1016/s0009-2797(02)00066-2. [DOI] [PubMed] [Google Scholar]
  23. Williams T., Fried M. A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3' ends. Nature. 1986 Jul 17;322(6076):275–279. doi: 10.1038/322275a0. [DOI] [PubMed] [Google Scholar]
  24. Wittwer C. T., Herrmann M. G., Moss A. A., Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997 Jan;22(1):130-1, 134-8. doi: 10.2144/97221bi01. [DOI] [PubMed] [Google Scholar]
  25. van Bokhoven H., Rawson R. B., Merkx G. F., Cremers F. P., Seabra M. C. cDNA cloning and chromosomal localization of the genes encoding the alpha- and beta-subunits of human Rab geranylgeranyl transferase: the 3' end of the alpha-subunit gene overlaps with the transglutaminase 1 gene promoter. Genomics. 1996 Dec 1;38(2):133–140. doi: 10.1006/geno.1996.0608. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES