Skip to main content
Yeast (Chichester, England) logoLink to Yeast (Chichester, England)

Comparative Genomics Uncovers Large Tandem Chromosomal Duplications in Mycobacterium Bovis BCG Pasteur

Roland Brosch 1, Stephen V Gordon 1,3, Carmen Buchrieser 2, Alexander S Pym 1, Thierry Garnier 1, Stewart T Cole 1,
PMCID: PMC2448323  PMID: 10900457

Abstract

On direct comparison of minimal sets of ordered clones from bacterial artificial chromosome (BAC) libraries representing the complete genomes of Mycobacterium tuberculosis H37Rv and the vaccine strain, Mycobacterium bovis BCG Pasteur, two major rearrangements were identified in the genome of M. bovis BCG Pasteur. These were shown to correspond to two tandem duplications, DU1 and DU2, of 29 668 bp and 36 161 bp, respectively. While DU1 resulted from a single duplication event, DU2 apparently arose from duplication of a 100 kb genomic segment that subsequently incurred an internal deletion of 64 kb. Several lines of evidence suggest that DU2 may continue to expand, since two copies were detected in a subpopulation of BCG Pasteur cells. BCG strains harbouring DU1 and DU2 are diploid for at least 58 genes and contain two copies of oriC, the chromosomal origin of replication. These findings indicate that these genomic regions of the BCG genome are still dynamic. Although the role of DU1 and DU2 in the attenuation and/or altered immunogenicity of BCG is yet unknown, knowledge of their existence will facilitate quality control of BCG vaccine lots and may help in monitoring the efficacy of the world's most widely used vaccine.

Full Text

The Full Text of this article is available as a PDF (266.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behr M. A., Small P. M. A historical and molecular phylogeny of BCG strains. Vaccine. 1999 Feb 26;17(7-8):915–922. doi: 10.1016/s0264-410x(98)00277-1. [DOI] [PubMed] [Google Scholar]
  2. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999 May 28;284(5419):1520–1523. doi: 10.1126/science.284.5419.1520. [DOI] [PubMed] [Google Scholar]
  3. Brosch R., Gordon S. V., Billault A., Garnier T., Eiglmeier K., Soravito C., Barrell B. G., Cole S. T. Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun. 1998 May;66(5):2221–2229. doi: 10.1128/iai.66.5.2221-2229.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brosch R., Philipp W. J., Stavropoulos E., Colston M. J., Cole S. T., Gordon S. V. Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect Immun. 1999 Nov;67(11):5768–5774. doi: 10.1128/iai.67.11.5768-5774.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  6. Edlund T., Normark S. Recombination between short DNA homologies causes tandem duplication. Nature. 1981 Jul 16;292(5820):269–271. doi: 10.1038/292269a0. [DOI] [PubMed] [Google Scholar]
  7. Fine P. E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995 Nov 18;346(8986):1339–1345. doi: 10.1016/s0140-6736(95)92348-9. [DOI] [PubMed] [Google Scholar]
  8. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol. 1999 May;32(3):643–655. doi: 10.1046/j.1365-2958.1999.01383.x. [DOI] [PubMed] [Google Scholar]
  9. Gordon S. V., Heym B., Parkhill J., Barrell B., Cole S. T. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology. 1999 Apr;145(Pt 4):881–892. doi: 10.1099/13500872-145-4-881. [DOI] [PubMed] [Google Scholar]
  10. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996 Mar;178(5):1274–1282. doi: 10.1128/jb.178.5.1274-1282.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paget M. S., Kang J. G., Roe J. H., Buttner M. J. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 1998 Oct 1;17(19):5776–5782. doi: 10.1093/emboj/17.19.5776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Philipp W. J., Nair S., Guglielmi G., Lagranderie M., Gicquel B., Cole S. T. Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis. Microbiology. 1996 Nov;142(Pt 11):3135–3145. doi: 10.1099/13500872-142-11-3135. [DOI] [PubMed] [Google Scholar]
  13. Philipp W. J., Poulet S., Eiglmeier K., Pascopella L., Balasubramanian V., Heym B., Bergh S., Bloom B. R., Jacobs W. R., Jr, Cole S. T. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3132–3137. doi: 10.1073/pnas.93.7.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Qin M. H., Madiraju M. V., Rajagopalan M. Characterization of the functional replication origin of Mycobacterium tuberculosis. Gene. 1999 Jun 11;233(1-2):121–130. doi: 10.1016/s0378-1119(99)00148-1. [DOI] [PubMed] [Google Scholar]
  15. Salazar L., Fsihi H., de Rossi E., Riccardi G., Rios C., Cole S. T., Takiff H. E. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol. 1996 Apr;20(2):283–293. doi: 10.1111/j.1365-2958.1996.tb02617.x. [DOI] [PubMed] [Google Scholar]
  16. Thierry D., Cave M. D., Eisenach K. D., Crawford J. T., Bates J. H., Gicquel B., Guesdon J. L. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 1990 Jan 11;18(1):188–188. doi: 10.1093/nar/18.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wieles B., Ottenhoff T. H., Steenwijk T. M., Franken K. L., de Vries R. R., Langermans J. A. Increased intracellular survival of Mycobacterium smegmatis containing the Mycobacterium leprae thioredoxin-thioredoxin reductase gene. Infect Immun. 1997 Jul;65(7):2537–2541. doi: 10.1128/iai.65.7.2537-2541.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Yeast (Chichester, England) are provided here courtesy of Wiley

RESOURCES