Skip to main content
Yeast (Chichester, England) logoLink to Yeast (Chichester, England)

Distinct Requirements for Zebrafish Angiogenesis Revealed by a VEGF-A Morphant

Aidas Nasevicius 1,2, Jon Larson 1, Stephen C Ekker 1,
PMCID: PMC2448381  PMID: 11119306

Abstract

Angiogenesis is a fundamental vertebrate developmental process that requires signalling by the secreted protein vascular endothelial growth factor-A (VEGF-A). VEGF-A functions in the development of embryonic structures, during tissue remodelling and for the growth of tumour-induced vasculature. The study of the role of VEGF-A during normal development has been significantly complicated by the dominant, haplo-insufficient nature of VEGF-A-targeted mutations in mice. We have used morpholino-based targeted gene knock-down technology to generate a zebrafish VEGF-A morphant loss of function model. Zebrafish VEGF-A morphant embryos develop with an enlarged pericardium and with major blood vessel deficiencies. Morphological assessment at 2 days of development indicates a nearly complete absence of both axial and intersegmental vasculature, with no or reduced numbers of circulating red blood cells. Molecular analysis using the endothelial markers fli-1 and flk-1 at 1 day of development demonstrates a fundamental distinction between VEGF-A requirements for axial and intersegmental vascular structure specification. VEGF-A is not required for the initial establishment of axial vasculature patterning, whereas all development of intersegmental vasculature is dependent on VEGF-A signalling. The zebrafish thus serves as a quality model for the study of conserved vertebrate angiogenesis processes during embryonic development.

Full Text

The Full Text of this article is available as a PDF (260.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown L. A., Rodaway A. R., Schilling T. F., Jowett T., Ingham P. W., Patient R. K., Sharrocks A. D. Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech Dev. 2000 Feb;90(2):237–252. doi: 10.1016/s0925-4773(99)00256-7. [DOI] [PubMed] [Google Scholar]
  2. Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996 Apr 4;380(6573):435–439. doi: 10.1038/380435a0. [DOI] [PubMed] [Google Scholar]
  3. Chen J. N., Haffter P., Odenthal J., Vogelsang E., Brand M., van Eeden F. J., Furutani-Seiki M., Granato M., Hammerschmidt M., Heisenberg C. P. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996 Dec;123:293–302. doi: 10.1242/dev.123.1.293. [DOI] [PubMed] [Google Scholar]
  4. Driver S. E., Robinson G. S., Flanagan J., Shen W., Smith L. E., Thomas D. W., Roberts P. C. Oligonucleotide-based inhibition of embryonic gene expression. Nat Biotechnol. 1999 Dec;17(12):1184–1187. doi: 10.1038/70724. [DOI] [PubMed] [Google Scholar]
  5. Ferrara N., Carver-Moore K., Chen H., Dowd M., Lu L., O'Shea K. S., Powell-Braxton L., Hillan K. J., Moore M. W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996 Apr 4;380(6573):439–442. doi: 10.1038/380439a0. [DOI] [PubMed] [Google Scholar]
  6. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl) 1999 Jul;77(7):527–543. doi: 10.1007/s001099900019. [DOI] [PubMed] [Google Scholar]
  7. Gerber H. P., Hillan K. J., Ryan A. M., Kowalski J., Keller G. A., Rangell L., Wright B. D., Radtke F., Aguet M., Ferrara N. VEGF is required for growth and survival in neonatal mice. Development. 1999 Mar;126(6):1149–1159. doi: 10.1242/dev.126.6.1149. [DOI] [PubMed] [Google Scholar]
  8. Haigh J. J., Gerber H. P., Ferrara N., Wagner E. F. Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development. 2000 Apr;127(7):1445–1453. doi: 10.1242/dev.127.7.1445. [DOI] [PubMed] [Google Scholar]
  9. Ransom D. G., Haffter P., Odenthal J., Brownlie A., Vogelsang E., Kelsh R. N., Brand M., van Eeden F. J., Furutani-Seiki M., Granato M. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development. 1996 Dec;123:311–319. doi: 10.1242/dev.123.1.311. [DOI] [PubMed] [Google Scholar]
  10. Stainier D. Y., Fouquet B., Chen J. N., Warren K. S., Weinstein B. M., Meiler S. E., Mohideen M. A., Neuhauss S. C., Solnica-Krezel L., Schier A. F. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996 Dec;123:285–292. doi: 10.1242/dev.123.1.285. [DOI] [PubMed] [Google Scholar]
  11. Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999 Dec 10;1489(1):141–158. doi: 10.1016/s0167-4781(99)00150-5. [DOI] [PubMed] [Google Scholar]
  12. Thompson M. A., Ransom D. G., Pratt S. J., MacLennan H., Kieran M. W., Detrich H. W., 3rd, Vail B., Huber T. L., Paw B., Brownlie A. J. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol. 1998 May 15;197(2):248–269. doi: 10.1006/dbio.1998.8887. [DOI] [PubMed] [Google Scholar]
  13. Wang H., Long Q., Marty S. D., Sassa S., Lin S. A zebrafish model for hepatoerythropoietic porphyria. Nat Genet. 1998 Nov;20(3):239–243. doi: 10.1038/3041. [DOI] [PubMed] [Google Scholar]
  14. Weinstein B. M., Stemple D. L., Driever W., Fishman M. C. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med. 1995 Nov;1(11):1143–1147. doi: 10.1038/nm1195-1143. [DOI] [PubMed] [Google Scholar]

Articles from Yeast (Chichester, England) are provided here courtesy of Wiley

RESOURCES