Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2001 Oct;2(5):275–288. doi: 10.1002/cfg.110

Identification of Membrane Proteins in the Hyperthermophilic Archaeon Pyrococcus Furiosus Using Proteomics and Prediction Programs

James F Holden 1, Farris L Poole II 1, Sandra L Tollaksen 2, Carol S Giometti 2, Hanjo Lim 3,5, John R Yates III 3, Michael W W Adams 1,4,
PMCID: PMC2448401  PMID: 18629240

Abstract

Cell-free extracts from the hyperthermophilic archaeon Pyrococcus furiosus were separated into membrane and cytoplasmic fractions and each was analyzed by 2D-gel electrophoresis. A total of 66 proteins were identified, 32 in the membrane fraction and 34 in the cytoplasmic fraction. Six prediction programs were used to predict the subcellular locations of these proteins. Three were based on signal-peptides (SignalP, TargetP, and SOSUISignal) and three on transmembrane-spanning α-helices (TSEG, SOSUI, and PRED-TMR2). A consensus of the six programs predicted that 23 of the 32 proteins (72%) from the membrane fraction should be in the membrane and that all of the proteins from the cytoplasmic fraction should be in the cytoplasm. Two membrane-associated proteins predicted to be cytoplasmic by the programs are also predicted to consist primarily of transmembrane-spanning β-sheets using porin protein models, suggesting that they are, in fact, membrane components. An ATPase subunit homolog found in the membrane fraction, although predicted to be cytoplasmic, is most likely complexed with other ATPase subunits in the membrane fraction. An additional three proteins predicted to be cytoplasmic but found in the membrane fraction, may be cytoplasmic contaminants. These include a chaperone homolog that may have attached to denatured membrane proteins during cell fractionation. Omitting these three proteins would boost the membrane-protein predictability of the models to near 80%. A consensus prediction using all six programs for all 2242 ORFs in the P. furiosus genome estimates that 24% of the ORF products are found in the membrane. However, this is likely to be a minimum value due to the programs’ inability to recognize certain membrane-related proteins, such as subunits associated with membrane complexes and porin-type proteins.

Full Text

The Full Text of this article is available as a PDF (309.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Holden J. F., Menon A. L., Schut G. J., Grunden A. M., Hou C., Hutchins A. M., Jenney F. E., Jr, Kim C., Ma K. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2001 Jan;183(2):716–724. doi: 10.1128/JB.183.2.716-724.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson N. G., Anderson N. L. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem. 1978 Apr;85(2):331–340. doi: 10.1016/0003-2697(78)90229-4. [DOI] [PubMed] [Google Scholar]
  3. Anderson N. L., Anderson N. G. Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem. 1978 Apr;85(2):341–354. doi: 10.1016/0003-2697(78)90230-0. [DOI] [PubMed] [Google Scholar]
  4. Andersson H., Bakker E., von Heijne G. Different positively charged amino acids have similar effects on the topology of a polytopic transmembrane protein in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1491–1495. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Burley S. K. An overview of structural genomics. Nat Struct Biol. 2000 Nov;7 (Suppl):932–934. doi: 10.1038/80697. [DOI] [PubMed] [Google Scholar]
  7. Chevallet M., Santoni V., Poinas A., Rouquié D., Fuchs A., Kieffer S., Rossignol M., Lunardi J., Garin J., Rabilloud T. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis. 1998 Aug;19(11):1901–1909. doi: 10.1002/elps.1150191108. [DOI] [PubMed] [Google Scholar]
  8. Cordwell S. J., Nouwens A. S., Verrills N. M., Basseal D. J., Walsh B. J. Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis. 2000 Apr;21(6):1094–1103. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1094::AID-ELPS1094>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  9. Cowan S. W., Rosenbusch J. P. Folding pattern diversity of integral membrane proteins. Science. 1994 May 13;264(5161):914–916. doi: 10.1126/science.8178151. [DOI] [PubMed] [Google Scholar]
  10. Dove A. Proteomics: translating genomics into products? Nat Biotechnol. 1999 Mar;17(3):233–236. doi: 10.1038/6972. [DOI] [PubMed] [Google Scholar]
  11. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000 Jul 21;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. [DOI] [PubMed] [Google Scholar]
  12. Gatlin C. L., Kleemann G. R., Hays L. G., Link A. J., Yates J. R., 3rd Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem. 1998 Oct 1;263(1):93–101. doi: 10.1006/abio.1998.2809. [DOI] [PubMed] [Google Scholar]
  13. Giometti C. S., Gemmell M. A., Nance S. L., Tollaksen S. L., Taylor J. Detection of heritable mutations as quantitative changes in protein expression. J Biol Chem. 1987 Sep 15;262(26):12764–12767. [PubMed] [Google Scholar]
  14. Giometti C. S., Gemmell M. A., Tollaksen S. L., Taylor J. Quantitation of human leukocyte proteins after silver staining: a study with two-dimensional electrophoresis. Electrophoresis. 1991 Jul-Aug;12(7-8):536–543. doi: 10.1002/elps.1150120713. [DOI] [PubMed] [Google Scholar]
  15. Hirokawa T., Boon-Chieng S., Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–379. doi: 10.1093/bioinformatics/14.4.378. [DOI] [PubMed] [Google Scholar]
  16. Kihara D., Kanehisa M. Tandem clusters of membrane proteins in complete genome sequences. Genome Res. 2000 Jun;10(6):731–743. doi: 10.1101/gr.10.6.731. [DOI] [PubMed] [Google Scholar]
  17. Kihara D., Shimizu T., Kanehisa M. Prediction of membrane proteins based on classification of transmembrane segments. Protein Eng. 1998 Nov;11(11):961–970. doi: 10.1093/protein/11.11.961. [DOI] [PubMed] [Google Scholar]
  18. Li S. C., Goto N. K., Williams K. A., Deber C. M. Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6676–6681. doi: 10.1073/pnas.93.13.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Link A. J., Hays L. G., Carmack E. B., Yates J. R., 3rd Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis. 1997 Aug;18(8):1314–1334. doi: 10.1002/elps.1150180808. [DOI] [PubMed] [Google Scholar]
  20. Mitaku S., Ono M., Hirokawa T., Boon-Chieng S., Sonoyama M. Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system. Biophys Chem. 1999 Dec 13;82(2-3):165–171. doi: 10.1016/s0301-4622(99)00116-7. [DOI] [PubMed] [Google Scholar]
  21. Nielsen H., Brunak S., von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 1999 Jan;12(1):3–9. doi: 10.1093/protein/12.1.3. [DOI] [PubMed] [Google Scholar]
  22. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  23. Nouwens A. S., Cordwell S. J., Larsen M. R., Molloy M. P., Gillings M., Willcox M. D., Walsh B. J. Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis. 2000 Nov;21(17):3797–3809. doi: 10.1002/1522-2683(200011)21:17<3797::AID-ELPS3797>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  24. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  25. Pasquier C., Hamodrakas S. J. An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng. 1999 Aug;12(8):631–634. doi: 10.1093/protein/12.8.631. [DOI] [PubMed] [Google Scholar]
  26. Paulsen I. T., Nguyen L., Sliwinski M. K., Rabus R., Saier M. H., Jr Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol. 2000 Aug 4;301(1):75–100. doi: 10.1006/jmbi.2000.3961. [DOI] [PubMed] [Google Scholar]
  27. Robb F. T., Maeder D. L., Brown J. R., DiRuggiero J., Stump M. D., Yeh R. K., Weiss R. B., Dunn D. M. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 2001;330:134–157. doi: 10.1016/s0076-6879(01)30372-5. [DOI] [PubMed] [Google Scholar]
  28. Robb F. T., Park J. B., Adams M. W. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim Biophys Acta. 1992 Apr 17;1120(3):267–272. doi: 10.1016/0167-4838(92)90247-b. [DOI] [PubMed] [Google Scholar]
  29. Sapra R., Verhagen M. F., Adams M. W. Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2000 Jun;182(12):3423–3428. doi: 10.1128/jb.182.12.3423-3428.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shibui H., Hamamoto T., Yohda M., Kagawa Y. The stabilizing residues and the functional domains in the hyperthermophilic V-ATPase of Desulfurococcus. Biochem Biophys Res Commun. 1997 May 19;234(2):341–345. doi: 10.1006/bbrc.1997.6644. [DOI] [PubMed] [Google Scholar]
  31. Southern E., Mir K., Shchepinov M. Molecular interactions on microarrays. Nat Genet. 1999 Jan;21(1 Suppl):5–9. doi: 10.1038/4429. [DOI] [PubMed] [Google Scholar]
  32. Stetter K. O. Extremophiles and their adaptation to hot environments. FEBS Lett. 1999 Jun 4;452(1-2):22–25. doi: 10.1016/s0014-5793(99)00663-8. [DOI] [PubMed] [Google Scholar]
  33. Verhagen M. F., Menon A. L., Schut G. J., Adams M. W. Pyrococcus furiosus: large-scale cultivation and enzyme purification. Methods Enzymol. 2001;330:25–30. doi: 10.1016/s0076-6879(01)30368-3. [DOI] [PubMed] [Google Scholar]
  34. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES