Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Dec;3(6):470–483. doi: 10.1002/cfg.211

Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

Sudhir Sinha 1,, Shalini Arora 1, K Kosalai 1, Abdelkader Namane 2, Alex S Pym 3, Stewart T Cole 3
PMCID: PMC2448412  PMID: 18629250

Abstract

The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium.

Full Text

The Full Text of this article is available as a PDF (411.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akins D. R., Purcell B. K., Mitra M. M., Norgard M. V., Radolf J. D. Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect Immun. 1993 Apr;61(4):1202–1210. doi: 10.1128/iai.61.4.1202-1210.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barksdale L., Kim K. S. Mycobacterium. Bacteriol Rev. 1977 Mar;41(1):217–372. doi: 10.1128/br.41.1.217-372.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betts J. C., Dodson P., Quan S., Lewis A. P., Thomas P. J., Duncan K., McAdam R. A. Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology. 2000 Dec;146(Pt 12):3205–3216. doi: 10.1099/00221287-146-12-3205. [DOI] [PubMed] [Google Scholar]
  4. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  5. Braibant M., Gilot P., Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2000 Oct;24(4):449–467. doi: 10.1111/j.1574-6976.2000.tb00550.x. [DOI] [PubMed] [Google Scholar]
  6. Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. [DOI] [PubMed] [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  8. Cordwell S. J., Nouwens A. S., Walsh B. J. Comparative proteomics of bacterial pathogens. Proteomics. 2001 Apr;1(4):461–472. doi: 10.1002/1615-9861(200104)1:4<461::AID-PROT461>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  9. Covert B. A., Spencer J. S., Orme I. M., Belisle J. T. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics. 2001 Apr;1(4):574–586. doi: 10.1002/1615-9861(200104)1:4<574::AID-PROT574>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  10. Deres K., Schild H., Wiesmüller K. H., Jung G., Rammensee H. G. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature. 1989 Nov 30;342(6249):561–564. doi: 10.1038/342561a0. [DOI] [PubMed] [Google Scholar]
  11. Domenech P., Barry C. E., 3rd, Cole S. T. Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol. 2001 Feb;4(1):28–34. doi: 10.1016/s1369-5274(00)00160-0. [DOI] [PubMed] [Google Scholar]
  12. Frankenburg S., Axelrod O., Kutner S., Greenblatt C. L., Klaus S. N., Pirak E. A., McMaster R., Lowell G. H. Effective immunization of mice against cutaneous leishmaniasis using an intrinsically adjuvanted synthetic lipopeptide vaccine. Vaccine. 1996 Jun;14(9):923–929. doi: 10.1016/0264-410x(95)00245-v. [DOI] [PubMed] [Google Scholar]
  13. Friso G., Wikström L. Analysis of proteins from membrane-enriched cerebellar preparations by two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis. 1999 Apr-May;20(4-5):917–927. doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<917::AID-ELPS917>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  14. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Futai M., Noumi T., Maeda M. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem. 1989;58:111–136. doi: 10.1146/annurev.bi.58.070189.000551. [DOI] [PubMed] [Google Scholar]
  16. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol. 1999 May;32(3):643–655. doi: 10.1046/j.1365-2958.1999.01383.x. [DOI] [PubMed] [Google Scholar]
  17. Görg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000 Apr;21(6):1037–1053. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  18. Jungblut P. R., Müller E. C., Mattow J., Kaufmann S. H. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect Immun. 2001 Sep;69(9):5905–5907. doi: 10.1128/IAI.69.9.5905-5907.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jungblut P. R., Schaible U. E., Mollenkopf H. J., Zimny-Arndt U., Raupach B., Mattow J., Halada P., Lamer S., Hagens K., Kaufmann S. H. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol. 1999 Sep;33(6):1103–1117. doi: 10.1046/j.1365-2958.1999.01549.x. [DOI] [PubMed] [Google Scholar]
  20. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lee B. Y., Hefta S. A., Brennan P. J. Characterization of the major membrane protein of virulent Mycobacterium tuberculosis. Infect Immun. 1992 May;60(5):2066–2074. doi: 10.1128/iai.60.5.2066-2074.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  24. Mattow J., Jungblut P. R., Müller E. C., Kaufmann S. H. Identification of acidic, low molecular mass proteins of Mycobacterium tuberculosis strain H37Rv by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics. 2001 Apr;1(4):494–507. doi: 10.1002/1615-9861(200104)1:4<494::AID-PROT494>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  25. Mattow J., Jungblut P. R., Schaible U. E., Mollenkopf H. J., Lamer S., Zimny-Arndt U., Hagens K., Müller E. C., Kaufmann S. H. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis. 2001 Aug;22(14):2936–2946. doi: 10.1002/1522-2683(200108)22:14<2936::AID-ELPS2936>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  26. Mehrotra J., Bisht D., Tiwari V. D., Sinha S. Serological distinction of integral plasma membrane proteins as a class of mycobacterial antigens and their relevance for human T cell activation. Clin Exp Immunol. 1995 Dec;102(3):626–634. doi: 10.1111/j.1365-2249.1995.tb03863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mehrotra J., Mittal A., Dhindsa M. S., Sinha S. Fractionation of mycobacterial integral membrane proteins by continuous elution SDS-PAGE reveals the immunodominance of low molecular weight subunits for human T cells. Clin Exp Immunol. 1997 Sep;109(3):446–450. doi: 10.1046/j.1365-2249.1997.4531351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mehrotra J., Mittal A., Rastogi A. K., Jaiswal A. K., Bhandari N. K., Sinha S. Antigenic definition of plasma membrane proteins of Bacillus Calmette-Guérin: predominant activation of human T cells by low-molecular-mass integral proteins. Scand J Immunol. 1999 Oct;50(4):411–419. doi: 10.1046/j.1365-3083.1999.00616.x. [DOI] [PubMed] [Google Scholar]
  29. Molloy M. P., Herbert B. R., Slade M. B., Rabilloud T., Nouwens A. S., Williams K. L., Gooley A. A. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem. 2000 May;267(10):2871–2881. doi: 10.1046/j.1432-1327.2000.01296.x. [DOI] [PubMed] [Google Scholar]
  30. Molloy M. P., Herbert B. R., Walsh B. J., Tyler M. I., Traini M., Sanchez J. C., Hochstrasser D. F., Williams K. L., Gooley A. A. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis. 1998 May;19(5):837–844. doi: 10.1002/elps.1150190539. [DOI] [PubMed] [Google Scholar]
  31. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology. 2001 Feb;147(Pt 2):459–471. doi: 10.1099/00221287-147-2-459. [DOI] [PubMed] [Google Scholar]
  32. Pessolani M. C., Smith D. R., Rivoire B., McCormick J., Hefta S. A., Cole S. T., Brennan P. J. Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. J Exp Med. 1994 Jul 1;180(1):319–327. doi: 10.1084/jem.180.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Raviglione M. C., Snider D. E., Jr, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA. 1995 Jan 18;273(3):220–226. [PubMed] [Google Scholar]
  34. Rosenkrands I., King A., Weldingh K., Moniatte M., Moertz E., Andersen P. Towards the proteome of Mycobacterium tuberculosis. Electrophoresis. 2000 Nov;21(17):3740–3756. doi: 10.1002/1522-2683(200011)21:17<3740::AID-ELPS3740>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  35. Rosenkrands I., Weldingh K., Jacobsen S., Hansen C. V., Florio W., Gianetri I., Andersen P. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis. 2000 Mar;21(5):935–948. doi: 10.1002/(SICI)1522-2683(20000301)21:5<935::AID-ELPS935>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  36. Santoni V., Molloy M., Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000 Apr;21(6):1054–1070. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  37. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  38. Sigler K., Höfer M. Biotechnological aspects of membrane function. Crit Rev Biotechnol. 1997;17(2):69–86. doi: 10.3109/07388559709146607. [DOI] [PubMed] [Google Scholar]
  39. Snider D. E., Jr, Castro K. G. The global threat of drug-resistant tuberculosis. N Engl J Med. 1998 Jun 4;338(23):1689–1690. doi: 10.1056/NEJM199806043382309. [DOI] [PubMed] [Google Scholar]
  40. Spencer John S., Marques Maria Angela M., Lima Monica C. B. S., Junqueira-Kipnis Ana Paula, Gregory Bruce C., Truman Richard W., Brennan Patrick J. Antigenic specificity of the Mycobacterium leprae homologue of ESAT-6. Infect Immun. 2002 Feb;70(2):1010–1013. doi: 10.1128/iai.70.2.1010-1013.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tekaia F., Gordon S. V., Garnier T., Brosch R., Barrell B. G., Cole S. T. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis. 1999;79(6):329–342. doi: 10.1054/tuld.1999.0220. [DOI] [PubMed] [Google Scholar]
  42. Wissing J., Heim S., Flohé L., Bilitewski U., Frank R. Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry. Electrophoresis. 2000 Jul;21(13):2589–2593. doi: 10.1002/1522-2683(20000701)21:13<2589::AID-ELPS2589>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  43. Young D. B., Duncan K. Prospects for new interventions in the treatment and prevention of mycobacterial disease. Annu Rev Microbiol. 1995;49:641–673. doi: 10.1146/annurev.mi.49.100195.003233. [DOI] [PubMed] [Google Scholar]
  44. Young D. B., Garbe T. R. Lipoprotein antigens of Mycobacterium tuberculosis. Res Microbiol. 1991 Jan;142(1):55–65. doi: 10.1016/0923-2508(91)90097-t. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES