Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2002 Dec;3(6):494–498. doi: 10.1002/cfg.216

Endogenous Retroviruses and Human Evolution

Konstantin Khodosevich 1,, Yuri Lebedev 1, Eugene Sverdlov 1
PMCID: PMC2448423  PMID: 18629260

Abstract

Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs) comprise ∼ 5% of the human genome. The LTRs of ERVs contain many regulatory sequences, such as promoters, enhancers, polyadenylation signals and factor-binding sites. Thus, they can influence the expression of nearby human genes. All known human-specific LTRs belong to the HERV-K (human ERV) family, the most active family in the human genome. It is likely that some of these ERVs could have integrated into regulatory regions of the human genome, and therefore could have had an impact on the expression of adjacent genes, which have consequently contributed to human evolution. This review discusses possible functional consequences of ERV integration in active coding regions.

Full Text

The Full Text of this article is available as a PDF (91.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akopov S. B., Nikolaev L. G., Khil P. P., Lebedev Y. B., Sverdlov E. D. Long terminal repeats of human endogenous retrovirus K family (HERV-K) specifically bind host cell nuclear proteins. FEBS Lett. 1998 Jan 16;421(3):229–233. doi: 10.1016/s0014-5793(97)01569-x. [DOI] [PubMed] [Google Scholar]
  2. Barbulescu M., Turner G., Seaman M. I., Deinard A. S., Kidd K. K., Lenz J. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol. 1999 Aug 26;9(16):861–868. doi: 10.1016/s0960-9822(99)80390-x. [DOI] [PubMed] [Google Scholar]
  3. Berkhout B., Jebbink M., Zsíros J. Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. 1999 Mar;73(3):2365–2375. doi: 10.1128/jvi.73.3.2365-2375.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buzdin Anton, Khodosevich Konstantin, Mamedov Ilgar, Vinogradova Tatyana, Lebedev Yuri, Hunsmann Gerhard, Sverdlov Eugene. A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integrations of HERV-K LTRs. Genomics. 2002 Mar;79(3):413–422. doi: 10.1006/geno.2002.6705. [DOI] [PubMed] [Google Scholar]
  5. Ebersberger Ingo, Metzler Dirk, Schwarz Carsten, Päbo Svante. Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet. 2002 Apr 30;70(6):1490–1497. doi: 10.1086/340787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gagneux P., Varki A. Genetic differences between humans and great apes. Mol Phylogenet Evol. 2001 Jan;18(1):2–13. doi: 10.1006/mpev.2000.0799. [DOI] [PubMed] [Google Scholar]
  7. Goodman M. The genomic record of Humankind's evolutionary roots. Am J Hum Genet. 1999 Jan;64(1):31–39. doi: 10.1086/302218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herniou E., Martin J., Miller K., Cook J., Wilkinson M., Tristem M. Retroviral diversity and distribution in vertebrates. J Virol. 1998 Jul;72(7):5955–5966. doi: 10.1128/jvi.72.7.5955-5966.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapitonov V. V., Jurka J. The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J Mol Evol. 1999 Feb;48(2):248–251. doi: 10.1007/pl00013153. [DOI] [PubMed] [Google Scholar]
  10. Kim H. S., Yi J. M., Jeon S. H. Isolation and phylogenetic analysis of HERV-K long terminal repeat cDNA in cancer cells. AIDS Res Hum Retroviruses. 2001 Jul 1;17(10):987–990. doi: 10.1089/088922201750290113. [DOI] [PubMed] [Google Scholar]
  11. King M. C., Wilson A. C. Evolution at two levels in humans and chimpanzees. Science. 1975 Apr 11;188(4184):107–116. doi: 10.1126/science.1090005. [DOI] [PubMed] [Google Scholar]
  12. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  13. Lebedev Y. B., Belonovitch O. S., Zybrova N. V., Khil P. P., Kurdyukov S. G., Vinogradova T. V., Hunsmann G., Sverdlov E. D. Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene. 2000 Apr 18;247(1-2):265–277. doi: 10.1016/s0378-1119(00)00062-7. [DOI] [PubMed] [Google Scholar]
  14. Löwer R., Löwer J., Kurth R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5177–5184. doi: 10.1073/pnas.93.11.5177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Medstrand P., Landry J. R., Mager D. L. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem. 2000 Oct 27;276(3):1896–1903. doi: 10.1074/jbc.M006557200. [DOI] [PubMed] [Google Scholar]
  16. Medstrand P., Mager D. L. Human-specific integrations of the HERV-K endogenous retrovirus family. J Virol. 1998 Dec;72(12):9782–9787. doi: 10.1128/jvi.72.12.9782-9787.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mi S., Lee X., Li X., Veldman G. M., Finnerty H., Racie L., LaVallie E., Tang X. Y., Edouard P., Howes S. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000 Feb 17;403(6771):785–789. doi: 10.1038/35001608. [DOI] [PubMed] [Google Scholar]
  18. Schön U., Seifarth W., Baust C., Hohenadl C., Erfle V., Leib-Mösch C. Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology. 2001 Jan 5;279(1):280–291. doi: 10.1006/viro.2000.0712. [DOI] [PubMed] [Google Scholar]
  19. Sverdlov E. D. Retroviruses and primate evolution. Bioessays. 2000 Feb;22(2):161–171. doi: 10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  20. Taruscio D., Mantovani A. Human endogenous retroviral sequences: possible roles in reproductive physiopathology. Biol Reprod. 1998 Oct;59(4):713–724. doi: 10.1095/biolreprod59.4.713. [DOI] [PubMed] [Google Scholar]
  21. Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol. 2000 Apr;74(8):3715–3730. doi: 10.1128/jvi.74.8.3715-3730.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Turner G., Barbulescu M., Su M., Jensen-Seaman M. I., Kidd K. K., Lenz J. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol. 2001 Oct 2;11(19):1531–1535. doi: 10.1016/s0960-9822(01)00455-9. [DOI] [PubMed] [Google Scholar]
  23. Yi J. M., Kim H. M., Kim H. S. Molecular cloning and phylogenetic analysis of the human endogenous retrovirus HERV-K long terminal repeat elements in various cancer cells. Mol Cells. 2001 Aug 31;12(1):137–141. [PubMed] [Google Scholar]
  24. Yunis J. J., Prakash O. The origin of man: a chromosomal pictorial legacy. Science. 1982 Mar 19;215(4539):1525–1530. doi: 10.1126/science.7063861. [DOI] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES