Skip to main content
Comparative and Functional Genomics logoLink to Comparative and Functional Genomics
. 2003 Jun;4(3):342–345. doi: 10.1002/cfg.289

SSRD: Simple Sequence Repeats Database of the Human Genome

Subbaya Subramanian 1, Vamsi M Madgula 2, Ranjan George 2, Satish Kumar 2, Madhusudhan W Pandit 1, Lalji Singh 1,
PMCID: PMC2448451  PMID: 18629286

Abstract

Simple sequence repeats are predominantly found in most organisms. They play a major role in studies of genetic diversity, and are useful as diagnostic markers for many diseases. The simple sequence repeats database (SSRD) for the human genome was created for easy access to such repeats, for analysis, and to be used to understand their biological significance. The data includes the abundance and distribution of SSRs in the coding and non-coding regions of the genome, as well as their association with the UTRs of genes. The exact locations of repeats with respect to genomic regions (such as UTRs, exons, introns or intergenic regions) and their association with STS markers are also highlighted. The resource will facilitate repeat sequence analysis in the human genome and the understanding of the functional and evolutionary significance of simple sequence repeats. SSRD is available through two websites, http://www.ccmb.res.in/ssr and http://www.ingenovis.com/ssr.

Full Text

The Full Text of this article is available as a PDF (71.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albanèse V., Biguet N. F., Kiefer H., Bayard E., Mallet J., Meloni R. Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum Mol Genet. 2001 Aug 15;10(17):1785–1792. doi: 10.1093/hmg/10.17.1785. [DOI] [PubMed] [Google Scholar]
  2. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  3. Gur-Arie R., Cohen C. J., Eitan Y., Shelef L., Hallerman E. M., Kashi Y. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res. 2000 Jan;10(1):62–71. [PMC free article] [PubMed] [Google Scholar]
  4. Hui Jingyi, Stangl Karl, Lane William S., Bindereif Albrecht. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol. 2003 Jan;10(1):33–37. doi: 10.1038/nsb875. [DOI] [PubMed] [Google Scholar]
  5. Jurka J., Pethiyagoda C. Simple repetitive DNA sequences from primates: compilation and analysis. J Mol Evol. 1995 Feb;40(2):120–126. doi: 10.1007/BF00167107. [DOI] [PubMed] [Google Scholar]
  6. Kashi Y., King D., Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 1997 Feb;13(2):74–78. doi: 10.1016/s0168-9525(97)01008-1. [DOI] [PubMed] [Google Scholar]
  7. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  8. Majewski J., Ott J. GT repeats are associated with recombination on human chromosome 22. Genome Res. 2000 Aug;10(8):1108–1114. doi: 10.1101/gr.10.8.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pearson C. E., Sinden R. R. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol. 1998 Jun;8(3):321–330. doi: 10.1016/s0959-440x(98)80065-1. [DOI] [PubMed] [Google Scholar]
  10. Primmer C. R., Raudsepp T., Chowdhary B. P., Møller A. P., Ellegren H. Low frequency of microsatellites in the avian genome. Genome Res. 1997 May;7(5):471–482. doi: 10.1101/gr.7.5.471. [DOI] [PubMed] [Google Scholar]
  11. Sinden R. R. Neurodegenerative diseases. Origins of instability. Nature. 2001 Jun 14;411(6839):757–758. doi: 10.1038/35081234. [DOI] [PubMed] [Google Scholar]
  12. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thangaraj Kumarasamy, Subramanian Subbaya, Reddy Alla G., Singh Lalji. Unique case of deletion and duplication in the long arm of the Y chromosome in an individual with ambiguous genitalia. Am J Med Genet A. 2003 Jan 15;116A(2):205–207. doi: 10.1002/ajmg.a.10865. [DOI] [PubMed] [Google Scholar]
  14. Tóth G., Gáspári Z., Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 2000 Jul;10(7):967–981. doi: 10.1101/gr.10.7.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wren J. D., Forgacs E., Fondon J. W., 3rd, Pertsemlidis A., Cheng S. Y., Gallardo T., Williams R. S., Shohet R. V., Minna J. D., Garner H. R. Repeat polymorphisms within gene regions: phenotypic and evolutionary implications. Am J Hum Genet. 2000 Jul 7;67(2):345–356. doi: 10.1086/303013. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Comparative and Functional Genomics are provided here courtesy of Wiley

RESOURCES