Abstract
The effects of ionophores on tetracycline accumulation in Escherichia coli cells were investigated in the presence of polymyxin B nonapeptide. Accumulation was inhibited by nigericin but not by valinomycin. Tetracycline accumulation was stimulated by decreasing the pH of the medium and inhibited by the addition of magnesium ions. These results indicated that tetracycline enters cells through diffusion as a protonated form (TH2) and is accumulated as a membrane-impermeable magnesium-tetracycline chelate complex (THMg+). This noncarrier diffusion hypothesis was confirmed by the fact that tetracycline accumulated in protein-free liposomes through an artificially imposed pH difference.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argast M., Beck C. F. Tetracycline diffusion through phospholipid bilayers and binding to phospholipids. Antimicrob Agents Chemother. 1984 Aug;26(2):263–265. doi: 10.1128/aac.26.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Argast M., Beck C. F. Tetracycline uptake by susceptible Escherichia coli cells. Arch Microbiol. 1985 Apr;141(3):260–265. doi: 10.1007/BF00408069. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974 Dec 25;249(24):7747–7755. [PubMed] [Google Scholar]
- Cavatorta P., Spisni A., Casali E., Lindner L., Masotti L., Urry D. W. Intermolecular interactions of gramicidin A' transmembrane channels incorporated into lysophosphatidylcholine lipid systems. Biochim Biophys Acta. 1982 Jul 14;689(1):113–120. doi: 10.1016/0005-2736(82)90195-x. [DOI] [PubMed] [Google Scholar]
- Chopra I., Ball P. Transport of antibiotics into bacteria. Adv Microb Physiol. 1982;23:183–240. doi: 10.1016/s0065-2911(08)60338-0. [DOI] [PubMed] [Google Scholar]
- Chopra I., Eccles S. J. Diffusion of tetracycline across the outer membrane of Escherichia coli K-12: involvement of protein Ia. Biochem Biophys Res Commun. 1978 Jul 28;83(2):550–557. doi: 10.1016/0006-291x(78)91025-2. [DOI] [PubMed] [Google Scholar]
- Dürckheimer W. Tetracyclines: chemistry, biochemistry, and structure-activity relations. Angew Chem Int Ed Engl. 1975 Nov;14(11):721–734. doi: 10.1002/anie.197507211. [DOI] [PubMed] [Google Scholar]
- Flatman P. W. Magnesium transport across cell membranes. J Membr Biol. 1984;80(1):1–14. doi: 10.1007/BF01868686. [DOI] [PubMed] [Google Scholar]
- Kaneko M., Yamaguchi A., Sawai T. Energetics of tetracycline efflux system encoded by Tn10 in Escherichia coli. FEBS Lett. 1985 Dec 2;193(2):194–198. doi: 10.1016/0014-5793(85)80149-6. [DOI] [PubMed] [Google Scholar]
- Lindley E. V., Munske G. R., Magnuson J. A. Kinetic analysis of tetracycline accumulation by Streptococcus faecalis. J Bacteriol. 1984 Apr;158(1):334–336. doi: 10.1128/jb.158.1.334-336.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMurry L. M., Cullinane J. C., Petrucci R. E., Jr, Levy S. B. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrob Agents Chemother. 1981 Sep;20(3):307–313. doi: 10.1128/aac.20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMurry L., Levy S. B. Two transport systems for tetracycline in sensitive Escherichia coli: critical role for an initial rapid uptake system insensitive to energy inhibitors. Antimicrob Agents Chemother. 1978 Aug;14(2):201–209. doi: 10.1128/aac.14.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munske G. R., Lindley E. V., Magnuson J. A. Streptococcus faecalis proton gradients and tetracycline transport. J Bacteriol. 1984 Apr;158(1):49–54. doi: 10.1128/jb.158.1.49-54.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman M. J., Wilson T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem. 1980 Nov 25;255(22):10583–10586. [PubMed] [Google Scholar]
- Seto-Young D., Garcia M. L., Krulwich T. A. Reconstitution of a bacterial Na+/H+ antiporter. J Biol Chem. 1985 Sep 25;260(21):11393–11395. [PubMed] [Google Scholar]
- Smith M. C., Chopra I. Energetics of tetracycline transport into Escherichia coli. Antimicrob Agents Chemother. 1984 Apr;25(4):446–449. doi: 10.1128/aac.25.4.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaara M., Vaara T. Polycations sensitize enteric bacteria to antibiotics. Antimicrob Agents Chemother. 1983 Jul;24(1):107–113. doi: 10.1128/aac.24.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaara M., Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature. 1983 Jun 9;303(5917):526–528. doi: 10.1038/303526a0. [DOI] [PubMed] [Google Scholar]
- Yamaguchi A., Udagawa T., Sawai T. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem. 1990 Mar 25;265(9):4809–4813. [PubMed] [Google Scholar]