Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Mar;35(3):458–461. doi: 10.1128/aac.35.3.458

Preferential hydrolysis of cis configuration compounds at the 3,4 position of monobactams by beta-lactamase from Morganella morganii.

K Matsuda 1, M Sanada 1, S Nakagawa 1, M Inoue 1, S Mitsuhashi 1
PMCID: PMC245032  PMID: 2039196

Abstract

Carumonam and BO-1166 (cis configuration) were inactivated by beta-lactamase of Morganella morganii more rapidly than were aztreonam and BO-1165 (trans configuration), as demonstrated by spectrophotometric analysis and microbiological assay. An active enzyme was recovered more rapidly from the inactivated enzyme-monobactam complex derived from the cis form of monobactams than from the complex derived from the trans form of monobactams. This result suggests that the configuration at the 3,4 position on the azetidinone ring of monobactams, together with the chemical structure of the side chains attached to the azetidinone ring, may play an important role in the stability of monobactams to the beta-lactamase of M. morganii.

Full text

PDF
458

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bush K., Freudenberger J. S., Sykes R. B. Interaction of azthreonam and related monobactams with beta-lactamases from gram-negative bacteria. Antimicrob Agents Chemother. 1982 Sep;22(3):414–420. doi: 10.1128/aac.22.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hirai K., Iyobe S., Inoue M., Mitsuhashi S. Purification and properties of a new beta-lactamase from Pseudomonas cepacia. Antimicrob Agents Chemother. 1980 Mar;17(3):355–358. doi: 10.1128/aac.17.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Imada A., Kondo M., Okonogi K., Yukishige K., Kuno M. In vitro and in vivo antibacterial activities of carumonam (AMA-1080), a new N-sulfonated monocyclic beta-lactam antibiotic. Antimicrob Agents Chemother. 1985 May;27(5):821–827. doi: 10.1128/aac.27.5.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Matsubara N., Yotsuji A., Kumano K., Inoue M., Mitsuhashi S. Purification and some properties of a cephalosporinase from Proteus vulgaris. Antimicrob Agents Chemother. 1981 Jan;19(1):185–187. doi: 10.1128/aac.19.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Matsuda K., Hamana Y., Inoue M., Mitsuhashi S. In-vitro antibacterial activity of AMA-1080. J Antimicrob Chemother. 1985 Nov;16(5):539–547. doi: 10.1093/jac/16.5.539. [DOI] [PubMed] [Google Scholar]
  6. Matsuda K., Nakagawa S., Nakano F., Inoue M., Mitsuhashi S. Structure-activity relations of 4-fluoromethyl monobactams. J Antimicrob Chemother. 1987 Jun;19(6):753–760. doi: 10.1093/jac/19.6.753. [DOI] [PubMed] [Google Scholar]
  7. McDuffie J. R., Neely W. C. Determination of griseofulvin by time-resolved phosphorimetry. Anal Biochem. 1973 Aug;54(2):507–512. doi: 10.1016/0003-2697(73)90381-3. [DOI] [PubMed] [Google Scholar]
  8. Murakami K., Yoshida T. Covalent binding of moxalactam to cephalosporinase of Citrobacter freundii. Antimicrob Agents Chemother. 1985 May;27(5):727–732. doi: 10.1128/aac.27.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oefner C., D'Arcy A., Daly J. J., Gubernator K., Charnas R. L., Heinze I., Hubschwerlen C., Winkler F. K. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature. 1990 Jan 18;343(6255):284–288. doi: 10.1038/343284a0. [DOI] [PubMed] [Google Scholar]
  10. Saino Y., Inoue M., Mitsuhashi S. Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873. Antimicrob Agents Chemother. 1984 Mar;25(3):362–365. doi: 10.1128/aac.25.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Then R. L., Angehrn P. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob Agents Chemother. 1982 May;21(5):711–717. doi: 10.1128/aac.21.5.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Toda M., Inoue M., Mitsuhashi S. Properties of cephalosporinase from Proteus morganii. J Antibiot (Tokyo) 1981 Nov;34(11):1469–1475. doi: 10.7164/antibiotics.34.1469. [DOI] [PubMed] [Google Scholar]
  13. Vu H., Nikaido H. Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams. Antimicrob Agents Chemother. 1985 Mar;27(3):393–398. doi: 10.1128/aac.27.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES