Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Mar;35(3):500–505. doi: 10.1128/aac.35.3.500

SDZ MRL 953, a novel immunostimulatory monosaccharidic lipid A analog with an improved therapeutic window in experimental sepsis.

C Lam 1, E Schütze 1, J Hildebrandt 1, H Aschauer 1, E Liehl 1, I Macher 1, P Stütz 1
PMCID: PMC245039  PMID: 2039200

Abstract

SDZ MRL 953, a new synthetic monosaccharidic lipid A, was investigated in vitro and in vivo for immunopharmacological activities. In experimental models of microbial infections, the compound was highly protective when it was administered prophylactically either once or three times to myelosuppressed or immunocompetent mice. The 50% effective doses of SDZ MRL 953 varied with the infectious agents and the route of its administration. In all cases, the 50% effective doses were about 10(3) times higher than those obtained with endotoxin from Salmonella abortus equi. SDZ MRL 953 was, however, less toxic than lipopolysaccharide by a factor of 10(4) to greater than 7 x 10(5) times in galactosamine-sensitized mice. The compound was also an effective inducer of tolerance to endotoxin. Hence, repeated dosing with the compound induced a transient resistance (greater than or equal to 1 week) to lethal challenges with endotoxin. In vitro, the compound was devoid of intrinsic antimicrobial activity, but it moderately induced the release of cytokines from monocytes and primed human neutrophils for the enhanced production of reactive oxygen metabolites in response to a soluble stimulus. The results presented here suggest that SDZ MRL 953 may be useful in a clinical setting for enhancing resistance to infections, particularly in patients undergoing myelosuppressive chemotherapy or irradiation, and for the prophylaxis of endotoxin shock.

Full text

PDF
500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aschauer H., Grob A., Hildebrandt J., Schuetze E., Stuetz P. Highly purified lipid X is devoid of immunostimulatory activity. Isolation and characterization of immunostimulating contaminants in a batch of synthetic lipid X. J Biol Chem. 1990 Jun 5;265(16):9159–9164. [PubMed] [Google Scholar]
  2. Golenbock D. T., Leggett J. E., Rasmussen P., Craig W. A., Raetz C. R., Proctor R. A. Lipid X protects mice against fatal Escherichia coli infection. Infect Immun. 1988 Apr;56(4):779–784. doi: 10.1128/iai.56.4.779-784.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Guthrie L. A., McPhail L. C., Henson P. M., Johnston R. B., Jr Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984 Dec 1;160(6):1656–1671. doi: 10.1084/jem.160.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ikeda S., Kumazawa Y., Nishimura C., Nakatsuka M., Homma J. Y., Kiso M., Hasegawa A. Enhancement of nonspecific resistance to viral infection by chemically synthesized lipid A-subunit analogs with different backbone structures and acyl groups. Antiviral Res. 1988 Dec 1;10(4-5):167–178. doi: 10.1016/0166-3542(88)90029-0. [DOI] [PubMed] [Google Scholar]
  5. Ikeda S., Tominaga T., Nishimura C., Homma J. Y., Kiso M., Hasegawa A. Antiherpes activity of chemically synthesized lipid A-subunit analogue GLA-60 in immunosuppressed mice. Antiviral Res. 1989 May-Jun;11(4):173–180. doi: 10.1016/0166-3542(89)90002-8. [DOI] [PubMed] [Google Scholar]
  6. Kiso M., Tanaka S., Tanahashi M., Fujishima Y., Ogawa Y., Hasegawa A. Synthesis of 2-deoxy-4-O-phosphono-3-O-tetradecanoyl-2-[(3R)- and (3S)-3-tetradecanoyloxytetradecanamido]-D-glucose: a diastereoisomeric pair of 4-O-phosphono-D-glucosamine derivatives (GLA-27) related to bacterial lipid A. Carbohydr Res. 1986 May 1;148(2):221–234. doi: 10.1016/s0008-6215(00)90390-2. [DOI] [PubMed] [Google Scholar]
  7. Kumazawa Y., Nakatsuka M., Takimoto H., Furuya T., Nagumo T., Yamamoto A., Homma Y., Inada K., Yoshida M., Kiso M. Importance of fatty acid substituents of chemically synthesized lipid A-subunit analogs in the expression of immunopharmacological activity. Infect Immun. 1988 Jan;56(1):149–155. doi: 10.1128/iai.56.1.149-155.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. NOWOTNY A. Endotoxoid preparations. Nature. 1963 Feb 16;197:721–722. doi: 10.1038/197721b0. [DOI] [PubMed] [Google Scholar]
  9. Ozaki Y., Ohashi T., Minami A., Nakamura S. Enhanced resistance of mice to bacterial infection induced by recombinant human interleukin-1a. Infect Immun. 1987 Jun;55(6):1436–1440. doi: 10.1128/iai.55.6.1436-1440.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ribi E. Beneficial modification of the endotoxin molecule. J Biol Response Mod. 1984;3(1):1–9. [PubMed] [Google Scholar]
  11. Rietschel E. T., Brade H., Brade L., Brandenburg K., Schade U., Seydel U., Zähringer U., Galanos C., Lüderitz O., Westphal O. Lipid A, the endotoxic center of bacterial lipopolysaccharides: relation of chemical structure to biological activity. Prog Clin Biol Res. 1987;231:25–53. [PubMed] [Google Scholar]
  12. Sayers T. J., Macher I., Chung J., Kugler E. The production of tumor necrosis factor by mouse bone marrow-derived macrophages in response to bacterial lipopolysaccharide and a chemically synthesized monosaccharide precursor. J Immunol. 1987 May 1;138(9):2935–2940. [PubMed] [Google Scholar]
  13. Sharbaugh R. J., Grogan J. B. Suppression of reticuloendothelial function in the rat with cyclophosphamide. J Bacteriol. 1969 Oct;100(1):117–122. doi: 10.1128/jb.100.1.117-122.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smedly L. A., Tonnesen M. G., Sandhaus R. A., Haslett C., Guthrie L. A., Johnston R. B., Jr, Henson P. M., Worthen G. S. Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J Clin Invest. 1986 Apr;77(4):1233–1243. doi: 10.1172/JCI112426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takahashi I., Kotani S., Takada H., Tsujimoto M., Ogawa T., Shiba T., Kusumoto S., Yamamoto M., Hasegawa A., Kiso M. Requirement of a properly acylated beta(1-6)-D-glucosamine disaccharide bisphosphate structure for efficient manifestation of full endotoxic and associated bioactivities of lipid A. Infect Immun. 1987 Jan;55(1):57–68. doi: 10.1128/iai.55.1.57-68.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takayama K., Qureshi N., Mascagni P., Anderson L., Raetz C. R. Glucosamine-derived phospholipids in Escherichia coli. Structure and chemical modification of a triacyl glucosamine 1-phosphate found in a phosphatidylglycerol-deficient mutant. J Biol Chem. 1983 Dec 10;258(23):14245–14252. [PubMed] [Google Scholar]
  17. Takayama K., Qureshi N., Mascagni P. Complete structure of lipid A obtained from the lipopolysaccharides of the heptoseless mutant of Salmonella typhimurium. J Biol Chem. 1983 Nov 10;258(21):12801–12803. [PubMed] [Google Scholar]
  18. Urbaschek R., Urbaschek B. Induction of nonspecific resistance and stimulation of granulopoiesis by endotoxins and nontoxic bacterial cell wall components and their passive transfer. Ann N Y Acad Sci. 1985;459:97–110. doi: 10.1111/j.1749-6632.1985.tb20819.x. [DOI] [PubMed] [Google Scholar]
  19. Vogel S. N., Kaufman E. N., Tate M. D., Neta R. Recombinant interleukin-1 alpha and recombinant tumor necrosis factor alpha synergize in vivo to induce early endotoxin tolerance and associated hematopoietic changes. Infect Immun. 1988 Oct;56(10):2650–2657. doi: 10.1128/iai.56.10.2650-2657.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wymann M. P., von Tscharner V., Deranleau D. A., Baggiolini M. Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst. Anal Biochem. 1987 Sep;165(2):371–378. doi: 10.1016/0003-2697(87)90284-3. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES